Synlett 2012; 23(20): 2909-2912
DOI: 10.1055/s-0032-1317555
letter
© Georg Thieme Verlag Stuttgart · New York

Diastereoselective Synthesis of Enantiopure γ-Butenolide-butyrolactones towards Pseudopterogorgia Lactone Furanocembranoid Substructures

Allan Patrick G. Macabeo
a   Institut für Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany   Fax: +49(941)9434631   eMail: Oliver.Reiser@chemie.uni-regensburg.de
b   Organic Synthesis Laboratory, Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana St., Manila 1015, Philippines
,
Christian W. Lehmann
c   Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
,
Oliver Reiser*
a   Institut für Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany   Fax: +49(941)9434631   eMail: Oliver.Reiser@chemie.uni-regensburg.de
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 04. Oktober 2012

Accepted after revision: 19. Oktober 2012

Publikationsdatum:
16. November 2012 (online)


Abstract

A diastereoselective methodology for preparing trans-γ-lactone-γ-butenolides through vinylogous aldol additions of siloxyfuranes to enantiopure cyclopropylcarbaldehyde followed by a tin-catalyzed retroaldol–lactonization cascade is reported. This synthetic approach is applied to a short synthesis of an exo-trienol furan lactone substructure relevant to bielschowskysin and other related coral diterpenoid natural products.

Supporting Information

 
  • References and Notes


    • For the isolation of 13, see:
    • 1a Marrero J, Rodriguez AD, Baran P, Raptis RG, Sanchez JA, Orteg-Barria E, Capson TL. Org. Lett. 2004; 6: 1661
    • 1b Rodriguez AD, Shi Y.-P. J. Org. Chem. 2000; 65: 5389
    • 1c Marrero J, Benitez J, Rodriguez AD, Zhao H, Raptis RG. J. Nat. Prod. 2008; 71: 381

      For the partial synthesis of 1, see:
    • 2a Doroh B, Sulikowski GA. Org. Lett. 2006; 8: 903
    • 2b Miao R, Gramani SG, Lear MJ. Tetrahedron Lett. 2009; 50: 1731
    • 2c Nicolau KC, Adsool VA, Hale CR. H. Angew. Chem. Int. Ed. 2011; 50: 5149
    • 2d Macabeo AP. G, Kreuzer A, Reiser O. Org. Biomol. Chem. 2011; 9: 3146
    • 2e Farcet JP, Himmelbauer M, Mulzer J. Org. Lett. 2012; 14: 2195
    • 3a Li Y, Pattenden G, Rogers J. Tetrahedron Lett. 2010; 51: 1280
    • 3b Kimbrough TJ, Roethle PA, Mayer P, Trauner D. Angew. Chem. Int. Ed. 2010; 49: 2619
    • 3c Roethle PA, Trauner D. Nat. Prod. Rep. 2008; 25: 298
    • 4a Böhm C, Schinnerl M, Bubert C, Zabel M, Labahn T, Parisini E, Reiser O. Eur. J. Org. Chem. 2000; 2955
    • 4b Böhm C, Reiser O. Org. Lett. 2001; 3: 1315
    • 4c Bandichhor R, Nosse B, Sörgel S, Böhm C, Seitz M, Reiser O. Chem.–Eur. J. 2003; 9: 1
    • 4d Schinnerl M, Böhm C, Seitz M, Reiser O. Tetrahedron: Asymmetry 2003; 14: 765
    • 4e Kalidindi K, Jeong WB, Schall A, Bandichhor R, Nosse B, Reiser O. Angew. Chem. Int. Ed. 2007; 46: 6361
    • 5a Casiraghi G, Zanardi F, Appendino G, Rassu G. Chem. Rev. 2000; 100: 1929
    • 5b Denmark SE, Heemstra JR. Jr, Beutner GL. Angew. Chem. Int. Ed. 2005; 44: 4682 ; Angew. Chem. 2005, 117, 4760.
    • 5c Kalesse M. Top. Curr. Chem. 2005; 244: 43
    • 5d Hosokawa S, Tatsuta K. Mini-Rev. Org. Chem. 2008; 5: 1
    • 5e Zanardi F, Battistini L, Curti C, Casiraghi G. Chemtracts 2010; 123
    • 6a Otera J, Dan-oh N, Nozaki H. J. Org. Chem. 1991; 56: 5307
    • 6b Orita A, Sakamoto K, Hamada Y, Mitsutome A, Otera J. Tetrahedron 1999; 55: 2899
  • 7 Representative Procedure for Butenolide-Lactone Synthesis (8d) Under a nitrogen atmosphere, BF3 ·OEt2 (0.28 mL, 2.21 mmol) was added via syringe to a solution of cyclopropylcarboxaldehyde (+)-4 (500 mg, 2.01 mmol) in anhyd CH2Cl2 (20 mL) at –78 °C. After stirring for 30 min, a solution of 6d in CH2Cl2 (2.11 mmol) was added slowly, resulting in an orange-colored solution. After stirring for 16 h at –78 °C, sat. aq NaHCO3 (45 mL) was added, and the mixture was allowed to warm to r.t. The layers were separated, and the aqueous layer was extracted three times with EtOAc (45 mL each). The combined organic layers were washed with brine (45 mL), H2O (45 mL), dried (Na2SO4), filtered, and concentrated in vacuo to give the carbinol cyclopropane 9d which was used for the next step without further purification. A round-bottomed flask, equipped with Dean–Stark trap was charged with crude cyclopropyl carbinol 9d (approx. 1 equiv) followed by ethylene glycol (224 μL, 4.02 mmol, 2 equiv) and Sn catalyst 10 (5 mol%). The mixture was gently refluxed for 12 h, after which the crude mixture was evaporated and purified by chromatography on silica gel (EtOAc–hexanes = 3:1) to furnish compound 8d. (2S,3S,2′S)-3-[1,3]Dioxolan-2-yl-3′-methyl-3,4-dihydro-2H,2′H-[2,2′]bifuranyl-5,5′-dione (8d) Yield 331 mg (65%), [α]D 25 +3.6 (c 0.3, MeOH), colorless crystals, mp 97–98 °C. 1H NMR (300 MHz, CDCl3): δ = 5.87 (m, 1 H), 4.94 (d, J = 4.1 Hz, 2 H), 4.69 (dt, J = 11.7, 5.8 Hz, 1 H), 4.10–3.86 (m, 4 H), 3.03 (td, J = 9.9, 4.4 Hz, 1 H), 2.79 (m, 1 H), 2.49 (dd, J = 18.0, 5.4 Hz, 1 H), 2.16 (dd, J = 12.3, 1.0 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 175.1, 172.2, 164.3, 118.3, 103.3, 84.5, 75.7, 65.8, 40.1, 29.4, 14.0. HRMS (EI): m/z calcd for C12H13O6 253.0712 [M – H]+; found: 253.0710. IR (neat): 2932, 2902, 2864, 1779, 1730, 1646, 1402, 1266, 1188, 1147, 1089, 1019, 975, 899 cm–1
  • 8 Details on this X-ray crystal structure can be obtained from the Cambridge Crystallographic Data Center quoting CCDC 901653; see also the Supporting Information.
    • 9a Gawronski JK, Chen QH, Geng Z, Huang B, Martin MR, Mateo AI, Brzotowska M, Rychilewska U, Feringa BL. Chirality 1997; 9: 537
    • 9b Gawrosnki JK, van Oeveren A, van der Deen H, Leung CW, Feringa BL. J. Org. Chem. 1996; 61: 1513
    • 9c Zanardi F, Battistini L, Rassu G, Pinna L, Mor M, Culeddu N, Casiraghi G. J. Org. Chem. 1998; 63: 1368
    • 9d Jefford CW, Jaggi D, Boukouvalas J. Tetrahedron Lett. 1987; 28: 4037
    • 9e Figadere B, Chaboche C, Peyrat JF, Cave A. Tetrahedron Lett. 1993; 34: 8093
    • 9f Zanardi F, Battistini L, Rassu G, Auzzas L, Pinna L, Marzocchi L, Acquotti D, Casiraghi G. J. Org. Chem. 2000; 65: 2048
  • 10 Mengel A, Reiser O. Chem. Rev. 1999; 99: 1191
  • 11 Maehara A, Satoh T, Miura M. Tetrahedron 2008; 64: 5982
  • 12 A mixture of 12 (50 mg, 0.21 mmol), ethyl methacrylate (105 μL, 0.84 mmol), Pd(OAc)2 (2.4 mg, 0.011 mmol), Cu(OAc)2·H2O (84 mg, 0.42 mmol), and LiOAc (55 mg, 0.84 mmol) was stirred in DMF (1 mL) at 117 °C under air. After cooling, the reaction mixture was extracted with EtOAc and dried (Na2SO4). Compound 13 was purified by preparative reversed-phase HPLC using a gradient-elution method with increasing amounts of MeCN in H2O. 2-{(2′S,3′S)-3′-[1,3]Dioxolan-2-yl-3-methyl-5′-oxo-2′,3′,4′,5′-tetrahydro[2,2′]bifuranyl-5-ylmethyl}acrylic Acid Ethyl Ester (13) Yield 38 mg (52%). [α]D 25 +54.4 (c 0.4, CH2Cl2). 1H NMR (300 MHz, CDCl3): δ = 6.24 (t, J = 3.3 Hz, 1 H), 5.91 (s, 1 H), 5.52 (t, J = 4.2 Hz, 1 H), 5.41 (m, 1 H), 4.92 (t, J = 3.9 Hz, 1 H), 4.22 (m, 2 H), 4.05–3.87 (m, 4 H), 3.57 (d, 2 H), 3.13 (m, 1 H), 2.87 (m, 1 H), 2.63 (m, 1 H), 2.03 (t, 3 H), 1.30 (t, 3 H). 13C NMR (75 MHz, CDCl3): δ = 174.9, 165.8, 152.1, 143.0, 135.9, 125.5, 119.8, 109.5, 101.6, 72.2, 64.3, 59.4, 41.2, 29.6, 28.3, 13.0, 8.9. HRMS (EI): m/z calcd for C18H22O7 [M]+: 350.1366; found: 350.1364. IR (neat): 2962, 2904, 1779, 1714, 1634, 1406, 1260, 1196, 1024, 947, 795 cm–1.
  • 13 A solution of 13 (15 mg, 0.042 mmol) in a mixture of MeOH (50 μL) and Et2O (35 μL) was stirred and cooled to –40 °C. Bromine (7.1 μL, 0.044 mmol) in dry MeOH (0.1 mL) was added dropwise over 5 min. After addition, stirring was continued for an additional 10 min. The mixture was saturated with NH3 gas to pH 8, allowed to warm to r.t., diluted with Et2O and concentrated. The residue was purified by flash chromatography (silica gel, 1:1 EtOAc–hexanes) to afford a 1:1 mixture of 15 and 3-epi-15. 2-[(2S,2′S,3′S)-3′-[1,3]Dioxolan-2-yl-2-methoxy-3-methyl-5′-oxo-2′,3′,4′,5′-tetrahydro-2H-[2,2′]bifuranyl-(5Z)-ylidenemethyl]acrylic Acid Ethyl Ester (15) Yield 8.8 mg, 55%. 1H NMR (300 MHz, CDCl3): δ = 6.34 (s, 1 H), 6.18 (q, J = 1.4 Hz, 1 H), 5.41 (d, J = 5.1 Hz, 1 H), 4.85 (d, J = 3.5 Hz, 1 H), 4.50 (d, J = 2.1 Hz, 1 H), 4.28–4.18 (m, 2 H), 4.00–3.85 (m, 4 H), 3.47 (s, 2 H), 3.14 (s, 2 H), 2.84 (m, 1 H), 2.68 (m, 1 H), 2.42 (m, 1 H), 1.95 (s, 3 H), 1.31 (t, J = 3.2 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 176.7, 166.9, 157.6, 141.2, 133.7, 127.1, 124.1, 115.0, 103.9, 94.0, 81.1, 65.8, 61.3, 50.9, 50.4, 38.4, 28.9, 14.1, 12.4. HRMS (EI): m/z calcd for C19H24O8 [M]+: 380.1471; found: 380.1478. IR (neat): 2904, 1782, 1710, 1636, 1447, 1366, 1244, 1130, 1021, 957, 942, 852 cm–1.
    • 14a Kamel HN, Ferreira D, Garcia-Fernandez LF, Slattery M. J. Nat. Prod. 2007; 70: 1223
    • 14b Venkateswarlu Y, Sridevi KV, Rama Rao M. J. Nat. Prod. 1999; 62: 756
    • 14c Epifánio R.deA, Maria LF, Fenical WJ. Braz. Chem. Soc. 2000; 11: 584
    • 14d Sánchez MC, Ortega MJ, Zubia E, Carballo JL. J. Nat. Prod. 2006; 69: 1749
    • 14e Grote D, Dahse H.-M, Seifert K. Chem. Biodiversity 2008; 5: 2449
  • 15 Leading review: Reissig H.-U, Zimmer R. Chem. Rev. 2003; 103: 1151