Subscribe to RSS
DOI: 10.1055/s-0032-1317321
Garratt–Braverman Cyclization, a Powerful Tool for C–C Bond Formation
Publication History
Received: 04 July 2012
Accepted after revision: 30 August 2012
Publication Date:
19 October 2012 (online)
Abstract
Development of new strategies for C–C bond formation remains in the forefront of organic synthesis. The base-mediated rearrangement of bis-propargyl sulfones via bis-allenes generated in situ, now known as the Garratt–Braverman cyclization (GBC), leads to the formation of two new C–C bonds. The reaction has recently drawn attention from organic chemists due to the wide scope as well as interesting mechanism. This report aims to give an account of the developments in this area with particular emphasis on synthetic applications.
1 Introduction
2 Biradical-Generating Reactions
3 Fate of Biradicals
4 Garratt–Braverman Cyclization; A Historical Development
5 Exploration of Garratt–Braverman Chemistry in Organic Synthesis
5.1 Braverman’s Work
5.2 Feldman’s Work
5.3 Contribution from the Author’s Group
6 Competition between GBC and Biradical/Concerted Cyclization Reactions
6.1 GBC vs. MSC/SC
6.2 GBC vs. 6π-Electrocyclization
6.3 GBC vs. Nucleophilic Addition
7 Conclusion and Future Aspects
-
References
- 1a Kar M, Basak A. Chem. Rev. 2007; 107: 2861
- 1b Basak A, Mandal S, Bag SS. Chem. Rev. 2003; 103: 4077
- 1c Krohn K. Angew. Chem. Int. Ed. 2006; 45: 536
- 1d Saito I, Nakatani K. Bull. Chem. Soc. Jpn. 1996; 69: 3007
- 1e Wenk HH, Winkler M, Sander W. Angew. Chem. 2003; 115: 518
- 1f Maier ME, Bosse F, Niestroj AJ. Eur. J. Org. Chem. 1999; 1
- 1g Nicolaou KC, Smith AL In Modern Acetylene Chemistry . Stang PJ, Diederich F. VCH; Weinheim, Germany: 1995: 203-283
- 1h Maier ME. Synlett 1995; 13
- 2 Nicolaou KC, Dai WM. Angew. Chem. Int. Ed. Engl. 1991; 30: 1387
- 3a Lohse J, Hui C, Sönnichsen SH, Nielsen PE In DNA and RNA Cleavers and Chemotherapy of Cancer and Viral Diseases. . Meunier B. Kluwer Academic Publishers; Dordrecht, The Netherlands: 1996: 133-141
- 3b Breiner B, Kaya K, Roy S, Yang W, Alabugin I. Org. Biomol. Chem. 2012; 10: 3974
- 4a Lhermite H, Grierson D. Contemp. Org. Synth. 1996; 3: 93
- 4b Grisom JW, Gunawardena GU, Klingberg D, Huang D. Tetrahedron 1996; 52: 6453
- 5 Chen X, Tolbert LM, Hess DW, Henderson C. Macromolecules 2001; 34: 4104
- 6a Curran DP. Synthesis 1988; 417
- 6b Curran DP. Synthesis 1988; 489
-
6c Jasperse CP, Curran DP, Feving TL. Chem. Rev. 1991; 91: 1237
- 7a Jones RG, Bergman RG. J. Am. Chem. Soc. 1972; 9: 660
- 7b Bergman RG. Acc. Chem. Res. 1973; 6: 25
- 7c Lockhart TP, Bergman RG. J. Am. Chem. Soc. 1981; 103: 4091
- 7d Mitamura T, Ogawa A. Bull. Chem. Soc. Jpn. 2011; 84: 791
- 7e Cramer C. J. Am. Chem. Soc. 1998; 120: 6261
- 7f Lewis K, Wenzler D, Matzger A. Org. Lett. 2003; 5: 2195
- 8a Nagata R, Yamanaka H, Okazaki E, Saito I. Tetrahedron Lett. 1989; 30: 4995
- 8b Myers AG, Kuo EY, Finnney NS. J. Am. Chem. Soc. 1989; 111: 8057
- 8c Myers AG, Dragovich PS. J. Am. Chem. Soc. 1989; 111: 9130
- 8d Nagata R, Yamanaka H, Murahashi E, Saito I. Tetrahedron Lett. 1990; 31: 2907
- 8e Feng L, Kumar D, Barney D, Kerwin S. Org. Lett. 2004; 6: 2059
- 9 Sullivan RW, Coghlan VM, Munk SA, Reed MW, Moore HW. J. Org. Chem. 1994; 59: 2276
- 10a Schmittel M, Rodriguez D, Steffen JP. Molecules 2000; 5: 1372
- 10b Schmittel M, Steffen JP, Maywald M, Engels B, Helten H, Musch P. J. Chem. Soc., Perkin Trans. 2 2001; 2: 1331
- 10c Schmittel cyclization of aryl-substituted allenes can also be self-quenched, see: Wang K. Chem. Rev. 1996; 96: 207
- 10d Schmittel M, Mahajan A, Bucher G, Bats J. J. Org. Chem. 2007; 72: 2166
- 10e Schmittel M, Vavilala C, Cinar M. J. Phys. Org. Chem. 2010; 25: 182
- 11a Braverman S, Segev D. J. Am. Chem. Soc. 1974; 96: 1245
- 11b Garratt PJ, Neoh SB. J. Am. Chem. Soc. 1975; 97: 3255
- 11c Braverman S, Duar Y, Segev D. Tetrahedron Lett. 1976; 17: 3181
- 11d Garratt PJ, Neoh SB. J. Org. Chem. 1979; 44: 2667
- 11e Cheng YS. P, Garratt PJ, Neoh SB, Rumjanek VH. Isr. J. Chem. 1985; 26: 101
- 11f Braverman S, Duar Y. J. Am. Chem. Soc. 1990; 112: 5830
- 11g Zafrani Y, Gottlieb HE, Sprecher M, Braverman S. J. Org. Chem. 2005; 70: 10166
- 12a Hopf H, Musso H. Angew. Chem. Int. Ed. Engl. 1969; 8: 680
-
12b Hopf H, Kruger A, Schreiner PR. Chem. Eur. J. 2001; 7: 4386
- 13a Iwai I, Ide J. Chem. Pharm. Bull. 1964; 12: 1094
- 13b Iwai I In Mechanisms of Molecular Migrations . Vol. 2. Thyagarajan BS. Interscience; New York: 1969
- 14 Cheng PY. S, Dominguez E, Garratt PJ, Neoh SB. Tetrahedron Lett. 1978; 7: 691
- 15a Braverman S, Kumar SE. V. K, Cherkinsky M, Sprecher M, Goldberg I. Tetrahedron Lett. 2000; 41: 6923
- 15b Braverman S, Kumar SE. V. K, Cherkinsky M, Sprecher M, Goldberg I. Tetrahedron 2005; 61: 3547
-
16a Agenet N, Buisine O, Slowinski F, Gandon V, Aubert C, Malacria M. Org. React. 2007; 68: 1
-
16b Vollhardt KP. C. Angew. Chem. Int. Ed. Engl. 1984; 23: 539
- 16c Dötz KH. Angew. Chem. Int. Ed. Engl. 1975; 14: 644
- 17 Zafrani Y, Cherkinsky M, Gottlieb HE, Braverman S. Tetrahedron 2003; 59: 2641
- 18 Feldman KS, Selfridge BR. Heterocycles 2010; 1: 117
- 19 Basak A, Das S, Mallick D, Jemmis ED. J. Am. Chem. Soc. 2009; 131: 15695
- 20a Meyers AI, Avila WB. J. Org. Chem. 1981; 46: 3881
- 20b Kobayashi K, Kanno Y, Seko S, Suginome H. J. Chem. Soc., Perkin Trans. 1 1992; 3111
- 20c Harrowven DC, Bradley M, Castro JL, Flanagan SR. Tetrahedron Lett. 2001; 42: 6973
- 20d Mizufune H, Nakamura M, Mitsudera H. Tetrahedron Lett. 2001; 42: 437
- 20e Foley P, Eghbali N, Anastas PT. J. Nat. Prod. 2010; 73: 811
- 21 Mondal S, Maji M, Basak A. Tetrahedron Lett. 2011; 52: 1183
- 22 Maji M, Mallick D, Mondal S, Anoop A, Bag SS, Basak A, Jemmis ED. Org. Lett. 2011; 13: 888
- 23 Noureldin NA, Zhao D, Lee DG. J. Org. Chem. 1997; 62: 8767
- 24 Addy PS, Dutta S, Biradha K, Basak A. Tetrahedron Lett. 2012; 53: 19
- 25a Hassanean HA, Ibraheim ZZ, Takeya K, Horawa H. Die Pharmazie 2000; 55: 317
- 25b Eyong KB, Krohn K, Hussain H, Folefoc GN, Nkengfack AE, Schultz B, Hu Q. Chem. Pharm. Bull. 2005; 53: 616
- 25c Aguinaldo AM, Ocampo OP. M, Bowden B, Gray AI, Waterman PG. Phytochemistry 1993; 33: 933
- 26 Mukherjee R, Basak A. Synlett 2012; 23: 877
- 27a Knölker H.-J, Reddy KR. Chem. Rev. 2002; 102: 4303
- 27b Chakraborty DP In The Alkaloids . Vol. 44. Cordell GA. Academic Press; New York: 1993: 257 ; and references cited therein
- 27c Knölker H.-J. Curr. Org. Synth. 2004; 1: 309
- 27d Knölker H.-J. Top. Curr. Chem. 2005; 244: 115
- 27e Knölker H.-J, Reddy KR In The Alkaloids . Vol. 65. Cordell GA. Academic Press; Amsterdam: 2008: 1
- 27f Jana AK, Mal D. Chem. Commun. 2010; 46: 4411
- 28 Mukherjee R, Mondal S, Mallick D, Basak A, Jemmis ED. Chem. Asian J. 2012; 5: 957
- 29 Schmittel M, Strittmatter M, Vollmann K, Kiau S. Tetrahedron Lett. 1996; 37: 999
- 30 Mondal S, Basak A, Jana S, Anoop A. Tetrahedron 2012; 68: 7202
- 31a Okamura WH, Peter R, Reischel W. J. Am. Chem. Soc. 1985; 107: 1034
- 31b Wang KK, Zhang Q, Liao J. Tetrahedron Lett. 1996; 37: 4087
- 31c Zhou H, Xing Y, Yao J, Lu Y. J. Org. Chem. 2011; 76: 4582
For selected references for existing methods of aromatic ring formation from acyclic precursors, see: