Synlett 2013; 24(8): 1001-1005
DOI: 10.1055/s-0032-1316894
letter
© Georg Thieme Verlag Stuttgart · New York

Conjugated Enyne Synthesis by Rearrangement of Acetylenic Epoxides Mediated by Low-Valence Organotitanium and Organozirconium Reagents

Aurélien Denichoux
Université Pierre et Marie Curie-Paris 6, UMR CNRS 7201, Institut Parisien de Chimie Moléculaire, Institut de Chimie Moléculaire (FR 2769), Case 183, 4 place Jussieu, 75252 Paris Cedex 05, France   Fax: +33(144)277567   Email: fabrice.chemla@upmc.fr   Email: franck.ferreira@upmc.fr
,
Mathieu Cyklinsky
Université Pierre et Marie Curie-Paris 6, UMR CNRS 7201, Institut Parisien de Chimie Moléculaire, Institut de Chimie Moléculaire (FR 2769), Case 183, 4 place Jussieu, 75252 Paris Cedex 05, France   Fax: +33(144)277567   Email: fabrice.chemla@upmc.fr   Email: franck.ferreira@upmc.fr
,
Fabrice Chemla*
Université Pierre et Marie Curie-Paris 6, UMR CNRS 7201, Institut Parisien de Chimie Moléculaire, Institut de Chimie Moléculaire (FR 2769), Case 183, 4 place Jussieu, 75252 Paris Cedex 05, France   Fax: +33(144)277567   Email: fabrice.chemla@upmc.fr   Email: franck.ferreira@upmc.fr
,
Franck Ferreira*
Université Pierre et Marie Curie-Paris 6, UMR CNRS 7201, Institut Parisien de Chimie Moléculaire, Institut de Chimie Moléculaire (FR 2769), Case 183, 4 place Jussieu, 75252 Paris Cedex 05, France   Fax: +33(144)277567   Email: fabrice.chemla@upmc.fr   Email: franck.ferreira@upmc.fr
,
Alejandro Pérez-Luna
Université Pierre et Marie Curie-Paris 6, UMR CNRS 7201, Institut Parisien de Chimie Moléculaire, Institut de Chimie Moléculaire (FR 2769), Case 183, 4 place Jussieu, 75252 Paris Cedex 05, France   Fax: +33(144)277567   Email: fabrice.chemla@upmc.fr   Email: franck.ferreira@upmc.fr
› Author Affiliations
Further Information

Publication History

Received: 10 January 2013

Accepted after revision: 17 March 2013

Publication Date:
28 March 2013 (online)


Abstract

The rearrangement of acetylenic epoxides mediated by low-valence organotitanium and organozirconium reagents is ­reported to give conjugated enynes. Moderate to good yields and high selectivities are obtained when using the organozirconium(II) Negishi reagent in toluene at 20 °C; whereas only poor yields and low selectivities are achieved with the organotitanium(II) Sato reagent. The process is stereospecific and involves formation of titana- and zirconacyclopropenes by oxidative insertion of the low-valence titanium and zirconium reagents into the carbon–carbon triple bond of the acetylenic epoxides. These metallacyclopropenes then rearrange to afford stereodefined propargylmetals through the epoxide ring-opening. Conjugated enynes are finally produced by β-elimination of metal oxide.

 
  • References and Notes

  • 1 For a review, see: Negishi E, Anastasia L. Chem. Rev. 2003; 103: 1979

    • For examples, see:
    • 2a Shao L.-X, Shi M. J. Org. Chem. 2005; 70: 8635
    • 2b Saha D, Chatterjee T, Mukherjee M, Ranu BC. J. Org. Chem. 2012; 77: 9379
    • 3a Hatanaka Y, Hiyama T. J. Org. Chem. 1988; 53: 918
    • 3b Hatanaka Y, Matsui K, Hiyama T. Tetrahedron Lett. 1989; 30: 2403
    • 4a Uemura M, Takayama Y, Sato F. Org. Lett. 2004; 6: 5001
    • 4b Braun M, Hohmann A, Rahematpura J, Bühne C, Grimme S. Chem. Eur. J. 2004; 10: 4584

      For examples, see:
    • 5a Rudisill DE, Castonguay LA, Stille JK. Tetrahedron Lett. 1988; 29: 1509
    • 5b Beaudet I, Parrain J.-L, Quintard J.-P. Tetrahedron Lett. 1992; 33: 3647
    • 6a Miyaura N, Yamada K, Suzuki A. Tetrahedron Lett. 1979; 3437
    • 6b Miyaura N, Suzuki A. J. Chem. Soc., Chem. Commun. 1979; 866

      For palladium(0)- and nickel(0)-catalyzed cross-couplings of zinc reagents with 1,2-vinylic tellurides, see:
    • 7a Raminelli C, da Silva NC, Dos Santos AA, Porto AL. M, Andrade LH, Comasseto JV. Tetrahedron 2005; 61: 409
    • 7b Raminelli C, Gargalaka JJr, Silveira CC, Comasseto JV. Tetrahedron 2007; 63: 8801
  • 8 For examples of palladium(0)-catalyzed cross-coupling of vinylboranes with alkynylithiums, see: Negishi E, Yoshida T, Abramovich A, Lew G, Williams RM. Tetrahedron 1991; 47: 343

    • For examples of copper(I)-catalyzed cross-couplings of vinyl iodides with terminal alkynes, see:
    • 9a Marshall JA, Chobanian HR, Yanik MM. Org. Lett. 2001; 3: 4107
    • 9b Bates CG, Saejueng P, Venkataraman D. Org. Lett. 2004; 6: 1441
    • 9c Saejeung P, Bates CG, Venkataraman D. Synthesis 2005; 1706
  • 10 For cobalt(II)-catalyzed cross-couplings of vinyltriflates with alkynyl Grignard reagents, see: Shirakawa E, Sato T, Imazaki Y, Kimura T, Hayashi T. Chem. Commun. 2007; 4513
  • 11 Commerçon A, Normant JF, Villieras J. Tetrahedron 1980; 36: 1215

    • For examples, see:
    • 12a Wang Z, Campagna S, Yang K, Xu G, Pierce ME, Fortunak JM, Confalone PN. J. Org. Chem. 2000; 65: 1889
    • 12b Karatholuvhu MS, Fuchs PL. J. Am. Chem. Soc. 2004; 126: 14314

      For examples, see:
    • 13a Wang KK, Shi C, Petersen JL. J. Org. Chem. 1998; 63: 4413
    • 13b Badudri F, Fiandanese V, Marchese G, Punzi A. Tetrahedron 2001; 51: 549

      For examples, see:
    • 14a Inoue A, Maeda K, Shinokubo H, Oshima K. Tetrahedron 1999; 55: 665
    • 14b Shinokubo H, Oshima K. Synlett 2001; 322
    • 15a Ferreira F, Denichoux A, Chemla F, Bejjani J. Synlett 2004; 2051
    • 15b Botuha C, Chemla F, Ferreira F, Pérez-Luna A, Roy B. New J. Chem. 2007; 31: 1552
    • 15c Botuha C, Chemla F, Ferreira F, Louvel J, Pérez-Luna A. Tetrahedron: Asymmetry 2010; 21: 1147
  • 16 Kim S, Kim KH. J. Chem. Soc., Perkin Trans. 1 1997; 1095
    • 17a Sato F, Urabe H, Okamoto S. Chem. Rev. 2000; 100: 2835
    • 17b Sato F, Okamoto S. Adv. Synth. Catal. 2001; 343: 759
    • 18a Negishi E, Huo S In Titanium and Zirconium in Organic Synthesis . Marek I. Chap. 1 Wiley-VCH; Weinheim: 2002: 1
    • 18b Negishi E. Dalton Trans. 2005; 827

      For examples of insertion of low-valence titanium and zirconium complexes into the carbon–carbon triple bond of propargylic derivatives bearing leaving groups at the propargylic position, see:
    • 19a An DK, Okamoto S, Sato F. Tetrahedron Lett. 1998; 39: 4555
    • 19b Okamoto S, An DK, Sato F. Tetrahedron Lett. 1998; 39: 4551
    • 19c An DK, Hirakawa K, Okamoto S, Sato F. Tetrahedron Lett. 1999; 40: 3737
    • 19d Okamoto S, Matsuda S, An DK, Sato F. Tetrahedron Lett. 2001; 42: 6323
  • 20 For a discussion on the metallotropic equilibrium between allenyl and propargyl metals, see: Bejjani J, Botuha C, Chemla F, Ferreira F, Magnus S, Pérez-Luna A. Organometallics 2012; 31: 4876
  • 21 Hamada T, Mizojiri R, Urabe H, Sato F. J. Am. Chem. Soc. 2000; 122: 7138
    • 22a Ito H, Nakamura T, Taguchi T, Hanzawa Y. Tetrahedron Lett. 1992; 33: 3769
    • 22b Nakagawa T, Kasatkin A, Sato F. Tetrahedron Lett. 1995; 36: 3207
    • 22c Ito H, Nakamura T, Taguchi T, Hanzawa Y. Tetrahedron 1995; 51: 4507
    • 22d Yoshida Y, Nakagawa T, Sato F. Synlett 1996; 437
    • 22e An DK, Okamoto S, Sato F. Tetrahedron Lett. 1998; 39: 4861
    • 22f Hanazawa T, Okamoto S, Sato F. Org. Lett. 2000; 2: 2369
    • 22g Yang F, Zhao G, Ding Y. Tetrahedron Lett. 2001; 42: 2839
  • 23 Dioumaev VK, Harrod JF. Organometallics 1997; 16: 1452
  • 24 Zhou Y, Chen J, Zhao C, Wang E, Liu Y, Li Y. J. Org. Chem. 2009; 74: 5326
  • 25 Because the ionization potential of a reagent is usually substantially larger than its electron affinity, the value of the ionization potential makes the dominant contribution to the hardness. Ti4+ is thus a harder Lewis acid than Zr4+ due to its higher value of ionization potential (99 eV for Ti4+and 80 eV for Zr4+).
  • 26 The hardness of metallic(IV) centers in 4 and 6 can be influenced by the nature of their ligands, i.e. i-PrO (a hard base) for titanium(IV) and and Cp (a soft base) for zirconium(IV). The steric hindrance generated by Cp could also decrease the oxophilicity of the zirconium in 6. See: Ayers RG, Pearson RG. J. Chem. Phys. 2006; 124: 194107
  • 27 Representative Procedure for the Preparation of 2a–h; Preparation of 2e: To a solution of Cp2ZrCl2 (117 mg, 0.40 mmol) in anhyd toluene (4 mL) was added dropwise n-BuLi (2.20 M in hexanes, 0.36 mL, 0.80 mmol) at –80 °C. The resulting mixture was warmed to –20 °C and stirred for 1 h at this temperature. Epoxide 1e (121 mg, 0.50 mmol) was then added and the mixture was immediately warmed to 20 °C. After 1 h of stirring at 20 °C, the reaction was quenched with aq 0.5 M HCl. The layers were separated, and the aqueous phase was extracted with Et2O (2 ×). The combined organic layers were washed with H2O, then brine, dried over anhyd MgSO4 and filtered through a plug of silica gel. Removal of the solvent and purification by flash chromatography (silica gel, pentane) afforded conjugated enyne 2e (50 mg, 55%) as a colorless oil. Analytical data were in agreement with those reported (see ref. 28).
  • 28 Ni Z.-H, Luh T.-Y. Org. Synth. 1992; 70: 240