Synthesis 2013; 45(4): 421-437
DOI: 10.1055/s-0032-1316846
review
© Georg Thieme Verlag Stuttgart · New York

Multimetallic Schiff Base Complexes as Cooperative Asymmetric Catalysts

Shigeki Matsunaga*
a   Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan   Fax: +81(3)56845206   Email: smatsuna@mol.f.u-tokyo.ac.jp
b   Japan Science and Technology Agency, ACT-C, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
,
Masakatsu Shibasaki*
c   Institute of Microbial Chemistry, Kamiosaki 3-14-23, Shinagawa-ku, Tokyo 141-0021, Japan   Email: mshibasa@bikaken.or.jp
› Author Affiliations
Further Information

Publication History

Received: 30 November 2012

Accepted after revision: 19 December 2012

Publication Date:
14 January 2013 (online)


Abstract

Multimetallic salen and related Schiff base complexes designed for cooperative asymmetric catalysis are introduced. First, studies to enhance the cooperative function of two distinct metal–salen units using covalently linked metal–salen complexes, supramolecular bimetallic salens as well as μ-oxo-bridged metal salens are described. Then, studies to design dinuclear Schiff base catalysts that exhibit unique intramolecular cooperative functions of two distinct metals are discussed in detail.

1 Introduction

2 Covalently Linked Metal Salens

3 Supramolecular Bimetallic Salens

4 μ-Oxo-Bridged Metal Salens

5 Heterodinuclear Schiff Base Complexes

6 Homodinuclear Schiff Base Complexes

7 Summary

 
  • References

  • 1 Fundamentals of Asymmetric Catalysis . Walsh PJ, Kozlowski MC. University Science Books; Sausalito (CA, USA): 2009

    • Reviews:
    • 2a Sawamura M, Ito Y. Chem. Rev. 1992; 92: 857
    • 2b Shibasaki M, Yoshikawa N. Chem. Rev. 2002; 102: 2187
    • 2c Ma J.-A, Cahard D. Angew. Chem. Int. Ed. 2004; 43: 4566
    • 2d Yamamoto H, Futatsugi K. Angew. Chem. Int. Ed. 2005; 44: 1924
    • 2e Taylor MS, Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 1520
    • 2f Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
    • 2g Matsunaga S, Shibasaki M. Bull. Chem. Soc. Jpn. 2008; 81: 60
    • 2h Shibasaki M, Kanai M, Matsunaga S, Kumagai N. Acc. Chem. Res. 2009; 42: 1117
    • 2i Park J, Hong S. Chem. Soc. Rev. 2012; 41: 6931

      Reviews:
    • 5a Jacobsen EN. Acc. Chem. Res. 2000; 33: 421
    • 5b Haak RM, Wezenberg SJ, Kleij AW. Chem. Commun. 2010; 46: 2713
  • 6 Review: Wezenberg SJ, Kleij AW. Angew. Chem. Int. Ed. 2008; 47: 2354

    • Reviews:
    • 7a Baleizao C, Garcia H. Chem. Rev. 2006; 106: 3987
    • 7b McGarrigle EM, Gilheany DG. Chem. Rev. 2005; 105: 1563
    • 9a Larrow JF, Schaus SE, Jacobsen EN. J. Am. Chem. Soc. 1996; 118: 7420
    • 9b Hansen KB, Leighton JL, Jacobsen EN. J. Am. Chem. Soc. 1996; 118: 10924
    • 10a Tokunaga M, Larrow JF, Kakiuchi F, Jacobsen EN. Science 1997; 277: 936
    • 10b Reddy JM, Jacobsen EN. J. Am. Chem. Soc. 1999; 121: 6086
    • 10c Schaus SE, Brandes BD, Larrow JF, Tokunaga M, Hansen KB, Gould AE, Furrow ME, Jacobsen EN. J. Am. Chem. Soc. 2002; 124: 1307
  • 11 Sammis GM, Jacobsen EN. J. Am. Chem. Soc. 2003; 125: 4442
    • 12a Nielsen LP. C, Stevenson CP, Blackmond DG, Jacobsen EN. J. Am. Chem. Soc. 2004; 126: 1360
    • 12b Nielsen LP. C, Zuend SJ, Ford DD, Jacobsen EN. J. Org. Chem. 2012; 77: 2486
  • 13 Konsler RG, Karl J, Jacobsen EN. J. Am. Chem. Soc. 1998; 120: 10780
    • 14a Taylor MS, Jacobsen EN. J. Am. Chem. Soc. 2003; 125: 11204
    • 14b To enhance the heterobimetallic intermolecular cooperative pathway, an Er-Pybox complex was added; see: Sammis GM, Danjo H, Jacobsen EN. J. Am. Chem. Soc. 2004; 126: 9928
  • 15 Mazet C, Jacobsen EN. Angew. Chem. Int. Ed. 2008; 47: 1762
    • 16a Wezenberg SJ, Kleij AW. Adv. Synth. Catal. 2010; 352: 85
    • 16b Haak RM, Martínez Belmonte M, Escudero-Adán EC, Benet-Buchholz J, Kleij AW. Dalton Trans. 2010; 39: 593

      For examples of polymer-supported metal–salen complexes to enhance bimolecular cooperative function, see reviews:
    • 17a Madhavan N, Jones CW, Weck M. Acc. Chem. Res. 2008; 41: 1153
    • 17b Leung AC. W, Maclachlan MJ. J. Inorg. Organomet. Polym. Mater. 2007; 17: 57

    • For selected representative examples, see:
    • 17c Annis DA, Jacobsen EN. J. Am. Chem. Soc. 1999; 121: 4147
    • 17d Zheng X, Jones CW, Weck M. Chem. Eur. J. 2006; 12: 576
    • 17e Rossbach BM, Leopold K, Weberskirch R. Angew. Chem. Int. Ed. 2006; 45: 1309
    • 17f Venkatasubbaiah K, Gill CS, Takatani T, Sherrill CD, Jones CW. Chem. Eur. J. 2009; 15: 3951
    • 17g Gill CS, Venkatasubbaiah K, Jones CW. Adv. Synth. Catal. 2009; 351: 1344
    • 17h See also ref. 5b.
    • 18a Breinbauer R, Jacobsen EN. Angew. Chem. Int. Ed. 2000; 39: 3604
    • 18b Goyal P, Zheng X, Weck M. Adv. Synth. Catal. 2008; 350: 1816
  • 19 Belser T, Jacobsen EN. Adv. Synth. Catal. 2008; 350: 967
  • 20 Wu MH, Hansen KB, Jacobsen EN. Angew. Chem. Int. Ed. 1999; 38: 2012
  • 21 Ready JM, Jacobsen EN. J. Am. Chem. Soc. 2001; 123: 2687
  • 22 Ready JM, Jacobsen EN. Angew. Chem. Int. Ed. 2002; 41: 1374
    • 23a Zheng X, Jones CW, Weck M. J. Am. Chem. Soc. 2007; 129: 1105
    • 23b For application of same concept to the aluminum–salen complex, see: Madhavan N, Takatani T, Sherrill CD, Weck M. Chem. Eur. J. 2009; 15: 1186
  • 24 Loy RN, Jacobsen EN. J. Am. Chem. Soc. 2009; 131: 2786
    • 25a Hirahata W, Thomas RM, Lobkovsky EB, Coates GW. J. Am. Chem. Soc. 2008; 130: 17658
    • 25b Thomas RM, Widger PC. B, Ahmed SM, Jeske RC, Hirahata W, Lobkovsky EB, Coates GW. J. Am. Chem. Soc. 2010; 132: 16520
    • 26a Gianneschi NC, Bertin ST, Nguyen ST, Mirkin CA, Zarharov LN, Rheingold AL. J. Am. Chem. Soc. 2003; 125: 10508
    • 26b Gianneschi NC, Cho S.-H, Nguyen ST, Mirkin CA, Zarharov LN, Rheingold AL. Angew. Chem. Int. Ed. 2004; 43: 5503
  • 27 Park J, Lang K, Abboud KA, Hong S. J. Am. Chem. Soc. 2008; 130: 16484
  • 28 Lang K, Park J, Hong S. Angew. Chem. Int. Ed. 2012; 51: 1620
  • 29 Park J, Lang K, Abboud KA, Hong S. Chem. Eur. J. 2011; 17: 2236
    • 30a Belokon’ YN, Caveda-Cepas S, Green B, Ikonnikov NS, Khrustalev VN, Larichev VS, Moscalenko MA, North M, Orizu C, Tararov VI, Tasinazzo M, Timofeeva GI, Yashkina LV. J. Am. Chem. Soc. 1999; 121: 3968

      The synthetic utility of the μ-oxo dimeric Al-L1 catalyst was demonstrated by Jacobsen and co-workers in many enantioselective reactions and catalytic asymmetric tota syntheses of natural products. For representative examples, see:
    • 31a Sigman MS, Jacobsen EN. J. Am. Chem. Soc. 1998; 120: 5315
    • 31b Myers JK, Jacobsen EN. J. Am. Chem. Soc. 1999; 121: 8959
    • 31c Vanderwal CD, Jacobsen EN. J. Am. Chem. Soc. 2004; 126: 14724
    • 31d Taylor MS, Zalatan DN, Lerchner AM, Jacobsen EN. J. Am. Chem. Soc. 2005; 127: 1313
    • 31e Raheem IT, Goodman SN, Jacobsen EN. J. Am. Chem. Soc. 2004; 126: 706
    • 31f Balskus EP, Jacobsen EN. J. Am. Chem. Soc. 2006; 128: 6810
    • 32a North M, Williamson C. Tetrahedron Lett. 2009; 50: 3249

    • North and co-workers also reported the utility of μ-oxo dimeric Al-L1 catalyst as the intramolecular cooperative catalyst in epoxide ring opening reaction with CO2:
    • 32b North M, Pasquale R. Angew. Chem. Int. Ed. 2009; 48: 2946
    • 32c Meléndez J, North M, Pasquale R. Eur. J. Inorg. Chem. 2007; 3323
  • 33 Zhang Z, Wang Z, Zhang R, Ding K. Angew. Chem. Int. Ed. 2010; 49: 6746
    • 34a Wu B, Gallucci JC, Parquette JR, RajanBabu TV. Angew. Chem. Int. Ed. 2009; 48: 1126
    • 34b For the application of dimeric Y-L2 catalyst to asymmetric ring opening of meso epoxides with cyanide, see: Saha B, Lin M.-H, RajanBabu TV. J. Org. Chem. 2007; 72: 8648
  • 35 Wu B, Parquette JR, RajanBabu TV. Science 2009; 326: 1662
    • 36a Yoshino T, Morimoto H, Lu G, Matsunaga S, Shibasaki M. J. Am. Chem. Soc. 2009; 131: 17068
    • 36b Lu G, Yoshino T, Morimoto H, Matsunaga S, Shibasaki M. Angew. Chem. Int. Ed. 2011; 50: 4382
    • 36c Suzuki Y, Kanai M, Matsunaga S. Chem. Eur. J. 2012; 18: 7654
    • 36d Kato S, Yoshino T, Shibasaki M, Kanai M, Matsunaga S. Angew. Chem. Int. Ed. 2012; 51: 7007
  • 37 Belokon’ YN, Chusov D, Peregudov AS, Yashkina LV, Timofeeva GI, Maleev VI, North M, Kagan HB. Adv. Synth. Catal. 2009; 351: 3157
  • 38 Guo Q.-X, Wu Z.-J, Luo Z.-B, Liu Q.-Z, Ye J.-L, Luo S.-W, Cun L.-F, Gong L.-Z. J. Am. Chem. Soc. 2007; 129: 13927
    • 39a Takizawa S, Katayama T, Somei H, Asano Y, Yoshida T, Kameyama C, Rajesh D, Onitsuka K, Suzuki T, Mikami M, Yamataka H, Jayaprakash D, Sasai H. Tetrahedron 2008; 64: 3361
    • 39b Takizawa S, Katayama T, Kameyama C, Onitsuka K, Suzuki T, Yanagida T, Kawai T, Sasai H. Chem. Commun. 2008; 1810
    • 40a Li W, Thakur SS, Chen S.-W, Shin C.-K, Kawthekar RB, Kim G.-J. Tetrahedron Lett. 2006; 47: 3453
    • 40b Chen S.-W, Thakur SS, Li W, Shin C.-K, Kawthekar RB, Kim G.-J. J. Mol. Catal. A: Chem. 2006; 259: 116
    • 40c Kawthekar RB, Ahn C.-H, Kim G.-J. Catal. Lett. 2007; 115: 62
    • 40d Kawthekar RB, Kim G.-J. Synth. Commun. 2008; 38: 1236
    • 41a Yang M, Zhu C, Yuan F, Huang Y, Pan Y. Org. Lett. 2005; 7: 1927
    • 41b Sun J, Yuan F, Yang M, Pan Y, Zhu C. Tetrahedron Lett. 2009; 50: 548
    • 42a Annamalai V, DiMauro EF, Carroll PJ, Kozlowski MC. J. Org. Chem. 2003; 68: 1973
    • 42b DiMauro EF, Kozlowski MC. Org. Lett. 2001; 3: 1641
    • 42c DiMauro EF, Kozlowski MC. Organometallics 2002; 21: 1454
  • 43 Review: Sakamoto M, Manseki K, Okawa H. Coord. Chem. Rev. 2001; 219–221: 379
  • 44 Review: Shibasaki M, Matsunaga S. J. Synth. Org. Chem. Soc., Jpn. 2010; 68: 1142
    • 45a Handa S, Gnanadesikan V, Matsunaga S, Shibasaki M. J. Am. Chem. Soc. 2010; 132: 4925
    • 45b Handa S, Gnanadesikan V, Matsunaga S, Shibasaki M. J. Am. Chem. Soc. 2007; 129: 4900
    • 46a Handa S, Nagawa K, Sohtome Y, Matsunaga S, Shibasaki M. Angew. Chem. Int. Ed. 2008; 47: 3230
    • 46b Sohtome Y, Kato Y, Handa S, Aoyama N, Nagawa K, Shibasaki M. Org. Lett. 2008; 10: 2231
  • 47 Mihara H, Xu Y, Shepherd NE, Matsunaga S, Shibasaki M. J. Am. Chem. Soc. 2009; 131: 8384
  • 48 Xu Y, Lin L, Kanai M, Matsunaga S, Shibasaki M. J. Am. Chem. Soc. 2011; 133: 5791
  • 49 Furutachi M, Mouri S, Matsunaga S, Shibasaki M. Chem. Asian J. 2010; 5: 2351
  • 50 Gao J, Woolley FR, Zingaro RA. Org. Biomol. Chem. 2005; 3: 2126
  • 51 Chen Z, Morimoto H, Matsunaga S, Shibasaki M. J. Am. Chem. Soc. 2008; 130: 2170
  • 52 Chen Z, Yakura K, Matsunaga S, Shibasaki M. Org. Lett. 2008; 10: 3239
  • 53 Shepherd NE, Tanabe H, Xu Y, Matsunaga S, Shibasaki M. J. Am. Chem. Soc. 2010; 132: 3666
  • 54 Xu Y, Lu G, Matsunaga S, Shibasaki M. Angew. Chem. Int. Ed. 2009; 48: 3353
  • 55 Furutachi M, Chen Z, Matsunaga S, Shibasaki M. Molecules 2010; 15: 532
  • 56 Kato Y, Furutachi M, Chen Z, Mitsunuma H, Matsunaga S, Shibasaki M. J. Am. Chem. Soc. 2009; 131: 9168
  • 57 Tanabe H, Xu Y, Matsunaga S, Shibasaki M. Heterocycles 2012; 86: 611
  • 58 Xu Y, Matsunaga S, Shibasaki M. Org. Lett. 2010; 12: 3246
    • 59a Mitsunuma H, Shibasaki M, Kanai M, Matsunaga S. Angew. Chem. Int. Ed. 2012; 51: 5217
    • 59b Mitsunuma H, Matsunaga S. Chem. Commun. 2011; 47: 469
  • 60 Chen Z, Furutachi M, Kato Y, Matsunaga S, Shibasaki M. Angew. Chem. Int. Ed. 2009; 48: 2218
  • 61 Kato Y, Chen Z, Matsunaga S, Shibasaki M. Synlett 2009; 1635
  • 62 Mouri S, Chen Z, Matsunaga S, Shibasaki M. Chem. Commun. 2009; 5138
  • 63 Gopinaph P, Watanabe T, Shibasaki M. Org. Lett. 2012; 14: 1358
  • 64 Gopinaph P, Watanabe T, Shibasaki M. J. Org. Chem. 2012; 77: 9260
    • 65a Mouri S, Chen Z, Mitsunuma H, Furutachi M, Matsunaga S, Shibasaki M. J. Am. Chem. Soc. 2010; 132: 1255
    • 65b Mouri S, Chen Z, Matsunaga S, Shibasaki M. Heterocycles 2012; 84: 879