Synlett 2012; 23(15): 2165-2175
DOI: 10.1055/s-0032-1316739
account
© Georg Thieme Verlag Stuttgart · New York

The Application of [Bis(trifluoroacetoxy)iodo]benzene (PIFA) in the Synthesis of Nitrogen-Containing Heterocycles

Imanol Tellitu*
Departamento de Química Orgánica II, Facultad de Ciencia y Tecnología, Universidad del País Vasco / Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain, Fax: +34(94)6012748   Email: imanol.tellitu@ehu.es
,
Esther Domínguez*
Departamento de Química Orgánica II, Facultad de Ciencia y Tecnología, Universidad del País Vasco / Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain, Fax: +34(94)6012748   Email: imanol.tellitu@ehu.es
› Author Affiliations
Further Information

Publication History

Received: 05 June 2012

Accepted after revision: 27 June 2012

Publication Date:
03 September 2012 (online)


Abstract

Direct oxidation of suitably functionalized amides by application of the hypervalent iodine reagent PIFA [bis(trifluoroacet­oxy)iodo]benzene allows straightforward access to a variety of nitrogen-containing heterocycles. Comprehensive results from our group on the scope and limitations of such transformations will be highlighted.

1 Introduction

2 PIFA-Mediated Electrophilic Aromatic Amidation

3 PIFA-Mediated Olefin Amidation

4 PIFA-Mediated Alkyne Amidation

5 PIFA-Mediated Alkyne N–N and N–S Bond Formation

6 Synthetic Applications of PIFA-Mediated Heterocyclization Reactions

6.1 Synthesis of Pyrazoloquinolinones

6.2 Synthesis of Pyrrolobenzodiazepine DC-81 (17)

6.3 Synthesis of Pyrrolobenzodiazepines 71 and 77

6.4 Formal Synthesis of (±)-Clausenamide

6.5 Synthesis of Polyhydroxylated Indolizidines

7 Conclusions

 
  • References

  • 1 Silva LF. Jr, Olofsson B. Nat. Prod. Rep. 2011; 28: 1722
  • 2 Liang H, Ciufolini MA. Angew. Chem. Int. Ed. 2011; 50: 11849
  • 3 It is not the aim of this account to cover all aspects of the chemistry of the HIRs. Therefore, readers are referred to the reviews selected in the references throughout the manuscript

    • See, for example:
    • 4a Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299
    • 4b Varvoglis A. The Organic Chemistry of Polycoordinated Iodine. VCH; Weinheim: 1992
    • 4c Hypervalent Iodine Chemistry. In Top. Curr. Chem. 224. Wirth T. Springer; Berlin: 2003
    • 4d Pouységu L, Deffieux D, Quideau S. Tetrahedron 2010; 66: 2235
    • 4e Varvoglis A. Tetrahedron 1997; 53: 1179
  • 5 Merritt EA, Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052
  • 6 Ochiai M. J. Organomet. Chem. 2000; 611: 494
  • 7 Zhdankin VV, Stang PJ. Tetrahedron 1998; 54: 10927
  • 8 Magnus P, Lacour J, Evans PA, Roe MB, Hulme C. J. Am. Chem. Soc. 1996; 118: 3406
  • 9 Umemoto T. Chem. Rev. 1996; 96: 1757
  • 10 Zhdankin VV, Kuehl CJ, Krasutsky AP, Bolz JT, Mismash B, Woodward JK, Simonsen AJ. Tetrahedron Lett. 1995; 36: 7975
  • 11 Södergren MJ, Alonso DA, Bedekar AV, Andersson PG. Tetrahedron Lett. 1997; 38: 6897
  • 12 The ability of PhI to act as a leaving group has been estimated to be 106 times larger than that of a triflate group, see: Okuyama T, Takino T, Sueda T, Ochiai M. J. Am. Chem. Soc. 1995; 117: 3360
    • 13a Olivera R, SanMartin R, Tellitu I, Domínguez E. Tetrahedron 2002; 58: 3021
    • 13b SanMartin R, Tellitu I, Herrero MT, Moreno I, Olivera R, Pascual S, Domínguez E. Recent Res. Devel. Organic Chem., Transworld Research Network 2002; 6: 113
    • 14a McKillop A, Turrell AG, Young DW, Taylor EC. J. Am. Chem. Soc. 1980; 102: 6504
    • 14b Sawyer JS, Macdonald TL. Tetrahedron Lett. 1988; 29: 4839
    • 14c Taylor EC, Andrade JG. J. Chem. Soc., Chem. Commun. 1977; 538
    • 14d Landais Y, Robin J.-P. Tetrahedron 1992; 48: 7185
    • 14e Damon RE, Schlessinger RH. J. Org. Chem. 1976; 41: 3772
    • 14f Halton B, Maidment AI, Officer DL, Warnes JM. Aust. J. Chem. 1984; 37: 2119
    • 14g Boden N, Bushby RJ, Cammidge AN, Headcock G. Synthesis 1995; 31
    • 15a Kita Y, Gyoten M, Ohtsubo M, Tohma H, Takada T. Chem. Commun. 1996; 1481
    • 15b Takada S, Arisawa A, Gyoten M, Hamada R, Tohma H, Kita Y. J. Org. Chem. 1998; 63: 7698
    • 15c Tohma H, Morioka H, Takizawa S, Arisawa M, Kita Y. Tetrahedron 2001; 57: 345
  • 16 Moreno I, Tellitu I, SanMartin R, Domínguez E. Synlett 2001; 1161
  • 17 Moreno I, Tellitu I, SanMartin R, Domínguez E. Tetrahedron 2001; 57: 5403
  • 18 Kikugawa Y, Kawase M. J. Am. Chem. Soc. 1984; 106: 5728
  • 19 Cherest M, Lusinchi X. Tetrahedron Lett. 1989; 30: 715
  • 20 Kikugawa Y, Kawase M. Chem. Lett. 1990; 581
    • 21a Romero AG, Darlington WH, Jacobsen EJ, Mickelson JW. Tetrahedron Lett. 1996; 37: 2361
    • 21b Romero AG, Darlington WH, McMillan MW. J. Org. Chem. 1997; 62: 6582
    • 21c Wardrop DJ, Basak A. Org. Lett. 2001; 3: 2353
    • 21d Wardrop DJ, Zhang W. Org. Lett. 2001; 3: 1053
  • 22 Tamura Y, Yakura T, Haruta J.-I, Kita Y. J. Org. Chem. 1987; 52: 3927
    • 23a Serna S, Tellitu I, Domínguez E, Moreno I, SanMartin R. Tetrahedron 2004; 60: 6533
    • 23b Amano Y, Nishiyama S. Tetrahedron Lett. 2006; 47: 6505
  • 24 Herrero MT, Tellitu I, Domínguez E, Hernández S, Moreno I, SanMartin R. Tetrahedron 2002; 58: 8581
    • 25a Herrero MT, Tellitu I, Domínguez E, Moreno I, SanMartin R. Tetrahedron Lett. 2002; 43: 8273
    • 25b Correa A, Tellitu I, Domínguez E, Moreno I, SanMartin R. J. Org. Chem. 2005; 70: 2256
    • 26a Nicolaou KC, Zhong Y.-L, Baran PS. Angew. Chem. Int. Ed. 2000; 39: 625
    • 26b Nicolaou KC, Baran PS, Zhong Y.-L, Vega JA. Angew. Chem. Int. Ed. 2000; 39: 2525
    • 26c Nicolaou KC, Baran PS, Kranich R, Zhong T.-L, Sugita K, Zou N. Angew. Chem. Int. Ed. 2001; 40: 202
  • 27 Nicolaou KC, Baran PS, Zhong Y.-L, Barluenga S, Hunt KW, Kranich R, Vega JA. J. Am. Chem. Soc. 2002; 124: 2233
  • 28 Tellitu I, Urrejola A, Serna S, Moreno I, Herrero MT, Domínguez E, SanMartin R, Correa A. Eur. J. Org. Chem. 2007; 437
  • 29 Serna S, Tellitu I, Domínguez E, Moreno I, SanMartin R. Tetrahedron 2004; 60: 6533
  • 30 There exist similar transformations that allow the extension of this cyclization to non-terminal olefins, but they normally lead to mixture of regioisomers (5-exo vs. 6-endo ring closures), which is in agreement with a different mechanism that includes the ring opening of aziridinium intermediates, see: Wardrop DJ, Bowen EG, Forslund RE, Sussman AD, Weerasekera SL. J. Am. Chem. Soc. 2010; 132: 1188
  • 31 A related process of lactonization with phenonium ion participation has been published, see: Boye AC, Meyer D, Ingison CK, French AN, Wirth T. Org. Lett. 2003; 5: 2157

    • See, for example:
    • 32a Nagumo S, Ishii Y, Kakimoto Y, Kawahara N. Tetrahedron Lett. 2002; 43: 5333
    • 32b Nagumo S, Ono M, Kakimoto Y, Furukawa T, Hisano T, Mizukami M, Kawahara N, Akita H. J. Org. Chem. 2002; 67: 6618
  • 33 Serna S, Tellitu I, Domínguez E, Moreno I, SanMartin R. Tetrahedron Lett. 2003; 44: 3483
  • 34 Tamura Y, Yakura T, Haruta J.-I, Kita Y. Tetrahedron Lett. 1985; 26: 3837
  • 35 Serna S, Tellitu I, Domínguez E, Moreno I, SanMartin R. Org. Lett. 2005; 7: 3073
  • 36 Tellitu I, Serna S, Herrero MT, Moreno I, Domínguez E, SanMartin R. J. Org. Chem. 2007; 72: 1526
    • 37a Correa A, Tellitu I, Domínguez E, SanMartin R. J. Org. Chem. 2006; 71: 3501
    • 37b Correa A, Tellitu I, Domínguez E, SanMartin R. Tetrahedron 2006; 62: 11100
    • 37c Correa A, Tellitu I, Domínguez E, SanMartin R. Org. Lett. 2006; 8: 4811

      For some selected examples of indazole oriented strategies based on N–N bond-formation, see:
    • 38a Jin T, Yamamoto Y. Angew. Chem. Int. Ed. 2007; 46: 3323
    • 38b Mills AD, Nazer MZ, Haddadin MJ, Kurth MJ. J. Org. Chem. 2006; 71: 2687

      For some selected examples of the construction of benzisothiazoles based on N–S bond-formation, see:
    • 39a Shimizu M, Sugano Y, Konakahara T, Gama Y, Shibuya I. Tetrahedron 2002; 58: 3779
    • 39b Baggaley KH, English PD, Jennings LJ. A, Morgan B, Nunn B, Tyrrell AW. R. J. Med. Chem. 1985; 28: 1661
  • 40 Vors J.-P, Gerbaud V, Gabas N, Canselier JP, Jagerovic N, Jimeno ML, Elguero J. Tetrahedron 2003; 59: 555
  • 41 Stauffer SR, Coletta CJ, Tedesco R, Nishigushi G, Carlson K, Sun J, Katzenellenbogen BS, Katzenellenbogen JA. J. Med. Chem. 2000; 43: 4934
  • 42 Christodoulou MS, Kasiotis KM, Fokialakis N, Tellitu I, Haroutounian SA. Tetrahedron Lett. 2008; 49: 7100
  • 43 De Luca L, Giacomelli G, Masala S, Porcheddu A. Synlett 2004; 2299
  • 44 For a comprehensive review of different synthetic approaches to the PBD skeleton, see: Kamal A, Rao MV, Laxman N, Ramesh G, Reddy GS. K. Curr. Med. Chem. Anti-Cancer Agents 2002; 2: 215
  • 45 See reference 25b
  • 46 Pardo LM, Tellitu I, Domínguez E. Tetrahedron 2010; 66: 5811
  • 47 Zhu XZ, Li X.-Y, Liu J. Eur. J. Pharmacol. 2004; 500: 221
  • 48 Kim JY, Curtis-Long MJ, Seo WD, Ryu YB, Yang MS, Park KH. J. Org. Chem. 2005; 70: 4082
  • 49 Bertrand MB, Wolfe JP. Org. Lett. 2006; 8: 2353
  • 50 Tellitu I, Serna S, Domínguez E. ARKIVOC 2010; (iii): 7
  • 51 Hartwig W, Born L. J. Org. Chem. 1987; 52: 4352
    • 52a Díaz L, Bujons J, Casas J, Llebaria A, Delgado A. J. Med. Chem. 2010; 53: 5248
    • 52b Asano N, Nash RJ, Molyneux RJ, Fleet GW. J. Tetrahedron: Asymmetry 2000; 11: 1645
    • 52c Sinnott ML. Chem. Rev. 1990; 90: 1171

      For some recent representative examples, including references therein, see:
    • 53a Kamal A, Vangala SR. Tetrahedron 2011; 67: 1341
    • 53b Hu X.-G, Bartholomew B, Nash RJ, Wilson FX, Fleet GW. J, Nakagawa S, Kato A, Jia Y.-M, van Well R, Yu C.-Y. Org. Lett. 2010; 12: 2562
    • 53c Izquierdo I, Tamayo JA, Rodríguez M, Franco F, Lo Re D. Tetrahedron 2008; 64: 7910
    • 53d Karanjule NS, Markad SD, Shinde VS, Dhavale DD. J. Org. Chem. 2006; 71: 4667
  • 55 Chowdhury S, Roy S. J. Org. Chem. 1997; 62: 199