Synlett 2012; 23(14): 2059-2062
DOI: 10.1055/s-0032-1316585
letter
© Georg Thieme Verlag Stuttgart · New York

Aerobic Photooxidative Cleavage of Vicinal Diols to Carboxylic Acids Using 2-Chloroanthraquinone

Yoko Matsusaki
Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan, Fax: +81(58)2308108   Email: itoha@gifu-pu.ac.jp
,
Tomoaki Yamaguchi
Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan, Fax: +81(58)2308108   Email: itoha@gifu-pu.ac.jp
,
Norihiro Tada
Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan, Fax: +81(58)2308108   Email: itoha@gifu-pu.ac.jp
,
Tsuyoshi Miura
Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan, Fax: +81(58)2308108   Email: itoha@gifu-pu.ac.jp
,
Akichika Itoh*
Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan, Fax: +81(58)2308108   Email: itoha@gifu-pu.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 14 May 2012

Accepted after revision: 07 June 2012

Publication Date:
26 July 2012 (online)


Abstract

We developed the aerobic photooxidative cleavage of vicinal diols to carboxylic acids using 2-chloroanthraquinone in the presence of photoirradiation with a high-pressure mercury lamp. This is the first metal-free reaction using molecular oxygen as the terminal oxidant.

 
  • References and Notes

  • 1 Comprehensive Organic Transformations . 2nd ed.; Larock RC. Wiley; New York: 1999: 1254
    • 3a Ren Q.-G, Chen S.-Y, Zhou X.-T, Ji H.-B. Bioorg. Med. Chem. 2010; 18: 8144
    • 3b Kamijio S, Amaoka Y, Inoue M. Synthesis 2010; 2475
    • 3c Che C.-M, Yip W.-P, Yu W.-Y. Chem.–Asian J. 2006; 1: 453
    • 3d Grill JM, Ogle JM, Miller SA. J. Org. Chem. 2006; 71: 9291
    • 3e Iwahama T, Sakaguchi S, Nishiyama Y, Ishii Y. Tetrahedron Lett. 1995; 36: 1523
    • 3f Poch M, Alcon M, Moyano A, Pericas MA, Riera A. Tetrahedron Lett. 1993; 34: 7781
    • 3g Muzart J, N’ait Ajjou A. Synth. Commun. 1991; 21: 575
    • 3h Nunez MT, Martin VS. J. Org. Chem. 1990; 55: 1928
    • 3i Oguchi T, Ura T, Ishii Y, Ogawa M. Chem. Lett. 1989; 857
    • 3j Ishii Y, Yamawaki K, Ura T, Yamada H, Yoshida T, Ogawa M. J. Org. Chem. 1988; 53: 3587
    • 3k Yamawaki K, Nishihara H, Yoshida T, Ura T, Yamada H, Ishii Y, Ogawa M. Synth. Commun. 1988; 18: 869
    • 3l Kaneda K, Morimoto K, Imanaka T. Chem. Lett. 1988; 1295
    • 3m Ishii Y, Yamawaki K, Yoshida T, Ura T, Ogawa M. J. Org. Chem. 1987; 52: 1868
    • 3n Venturello C, Ricci M. J. Org. Chem. 1986; 51: 1599
    • 3o Yamawaki K, Yoshida T, Suda T, Ishii Y, Ogawa M. Synthesis 1986; 59
    • 3p Kaneda K, Kawanishi Y, Jitsukawa K, Teranishi S. Tetrahedron Lett. 1983; 24: 5009
    • 3q Carlsen PH. J, Katsuki T, Martin VS, Sharpless KB. J. Org. Chem. 1981; 46: 3936
    • 3r Wolfe S, Hasan KS, Campbell JR. J. Chem. Soc., Chem. Commun. 1970; 1420
    • 4a Khurana JM, Sharma P, Gogia A, Kandpal BM. Org. Prep. Proced. Int. 2007; 39: 185
    • 4b Banerjee A, Hazra B, Bhattacharya A, Banerjee S, Banerjee GC, Sengupta S. Synthesis 1989; 765
  • 5 Thottumkara PP, Vinod TK. Org. Lett. 2010; 12: 5640

    • For a recent review, see:
    • 6a Punniyamurthy T, Velusamy S, Iqbal J. Chem. Rev. 2005; 105: 2329
    • 6b Mallat T, Baiker A. Chem. Rev. 2004; 104: 3037
    • 6c Stahl SS. Angew. Chem. Int. Ed. 2004; 43: 3400
    • 6d Piera J, Backvall J.-E. Angew. Chem. Int. Ed. 2008; 47: 3506
    • 7a Iwahama T, Yoshino Y, Keitoku T, Sakaguchi S, Ishii Y. J. Org. Chem. 2000; 65: 6502
    • 7b Felthouse TR. J. Am. Chem. Soc. 1987; 109: 7566
    • 7c Veries GD, Schors A. Tetrahedron Lett. 1968; 54: 5689

      For recent reports, see:
    • 8a Tada N, Ban K, Nobuta T, Hirashima S, Miura T, Itoh A. Synlett 2011; 1381
    • 8b Tada N, Hattori K, Nobuta T, Miura T, Itoh A. Green Chem. 2011; 13: 1669
    • 8c Nobuta T, Hirashima S, Tada N, Miura T, Itoh A. Org. Lett. 2011; 13: 2576
    • 8d Tada N, Matsusaki Y, Miura T, Itoh A. Chem. Pharm. Bull. 2011; 59: 906
    • 8e Tada N, Ban K, Ishigami T, Nobuta T, Miura T, Itoh A. Tetrahedron Lett. 2011; 52: 3821
    • 8f Nobuta T, Tada N, Hattori K, Hirashima S, Miura T, Itoh A. Tetrahedron Lett. 2011; 52: 875
    • 8g Tada N, Cui L, Okubo H, Miura T, Itoh A. Chem. Commun. 2010; 46: 1772
    • 8h Tada N, Ban K, Yoshida M, Hirashima S, Miura T, Itoh A. Tetrahedron Lett. 2010; 51: 6098
    • 8i Tada N, Cui L, Okubo H, Miura T, Itoh A. Adv. Synth. Catal. 2010; 352: 2383
    • 8j Hirashima S, Nobuta T, Tada N, Miura T, Itoh A. Org. Lett. 2010; 12: 3645
    • 8k Tada N, Ban K, Hirashima S, Miura T, Itoh A. Org. Biomol. Chem. 2010; 8: 4701
    • 8l Kanai N, Nakayama H, Tada N, Itoh A. Org. Lett. 2010; 12: 1948
    • 8m Nobuta T, Hirashima S, Tada N, Miura T, Itoh A. Tetrahedron Lett. . 2010; 51: 4576
    • 8n Nobuta T, Hirashima S, Tada N, Miura T, Itoh A. Synlett 2010; 2335
    • 8o Tada N, Shomura M, Nakayama H, Miura T, Itoh A. Synlett 2010; 1979
  • 9 General Procedure A solution of 1-phenyl-1,2-ethanediol (1a, 0.3 mmol) and 2-chloroanthraquinone (0.03 mmol) in dry EtOAc (3 mL) in a Pyrex test tube, purged with an O2 balloon, was stirred and irradiated externally with a 400 W high-pressure mercury lamp for 20 h. The reaction mixture was concentrated in vacuo, and 1% aq NaOH was added. The aqueous solution was washed with Et2O, and then acidified with 2 M aq HCl solution, which was extracted with Et2O. The organic layer was washed with brine and dried over MgSO4, and concen-trated in vacuo. Purification of the crude product by PTLC (CHCl3–MeOH = 9:1) provided benzoic acid (Rf = 0.6, 31.4 mg, 86%). Benzoic Acid (2a) 1H NMR (400 MHz, CDCl3): δ = 8.13 (d, J = 7.4 Hz, 2 H), 7.62 (t, J = 7.4 Hz, 1 H), 7.48 (t, J = 7.4 Hz, 2 H). 13C NMR (100 MHz, acetone-d 6): δ = 172.6, 133.9, 130.3, 129.4, 128.6. 4-Chlorobenzoic Acid (2b) 1H NMR (500 MHz, acetone-d 6): δ = 8.01 (d, J = 8.6 Hz, 2 H), 7.53 (d, J = 8.6 Hz, 2 H). 13C NMR (100 MHz, acetone-d 6): δ = 166.7, 139.5, 132.1, 130.3, 129.5. 4-tert-Butylbenzoic Acid (2c) 1H NMR (500 MHz, CDCl3): δ = 8.06 (d, J = 8.7 Hz, 2 H), 7.49 (d, J = 8.7 Hz, 2 H), 1.35 (s, 9 H). 13C NMR (125 MHz, CDCl3): δ = 172.6, 157.7, 130.2, 126.7, 125.6, 35.3, 31.2. 4-Methoxybenzoic Acid (2d) 1H NMR (500 MHz, acetone-d 6): δ = 7.96 (d, J = 9.2 Hz, 2 H), 7.00 (d, J = 9.2 Hz, 2 H), 3.85 (s, 3 H). 13C NMR (100 MHz, acetone-d 6): δ = 167.5, 164.4, 132.5, 123.7, 114.5, 55.8. 2-Naphthoic Acid (2g) 1H NMR (400 MHz, acetone-d 6): δ = 8.66 (s, 1 H), 8.07 (dd, J = 8.5, 1.7 Hz, 2 H), 7.99 (dd, J = 8.5, 5.6 Hz, 2 H), 7.66–7.57 (m, 2 H). 13C NMR (100 MHz, acetone-d 6): δ = 168.9, 134.9, 134.2, 132.3, 131.3, 129.4, 128.4, 127.9, 127.0, 126.7, 125.5. Benzophenone (2h) 1H NMR (500 MHz,CDCl3): δ = 7.80 (d, J = 8.0 Hz, 4 H), 7.58 (t, J = 8.0 Hz, 2 H), 7.48 (t, J = 8.0 Hz, 4 H). 13C NMR (125 MHz, CDCl3): δ = 196.8, 137.8, 132.5, 130.2, 128.4. Nonanoic Acid (2i) 1H NMR (500 MHz,CDCl3): δ = 2.35 (t, J = 7.6 Hz, 2 H), 1.70–1.60 (m, 2 H), 1.39–1.22 (m, 10 H), 0.89 (t, J = 6.9 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 181.0, 34.5, 32.2, 29.6, 29.5, 29.5, 25.1, 23.1, 14.5. Undecanoic Acid (2j) 1H NMR (500 MHz,CDCl3): δ = 2.35 (t, J = 7.5 Hz, 2 H), 1.66–1.59 (m, 2 H), 1.35–1.21 (m, 14 H), 0.88 (t, J = 6.6 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 179.8, 32.0, 29.6, 29.5, 29.4, 29.3, 29.2, 29.1, 24.7, 22.7, 14.2. Tridecanoic Acid (2k) 1H NMR (500 MHz,CDCl3): δ = 2.35 (t, J = 7.5 Hz, 2 H), 1.65–1.55 (m, 2 H), 1.34–1.20 (m, 18 H), 0.88 (t, J = 6.9 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 179.8, 33.8, 31.6, 29.4, 29.3, 29.2, 29.1, 29.0, 28.8, 24.4, 22.4, 13.8. Adipic Acid (2l) 1H NMR (500 MHz, DMSO-d 6): δ = 2.22–2.18 (m, 4 H), 1.52–1.47 (m, 4 H). 13C NMR (125 MHz, DMSO-d 6): δ = 174.5, 33.5, 24.2.