Synlett 2012; 23(13): 1907-1912
DOI: 10.1055/s-0032-1316567
letter
© Georg Thieme Verlag Stuttgart · New York

Mono- and Biscouplings Using Triarylbismuths for the Atom-Efficient Arylations of Functionalized Furans under Palladium Catalysis

Maddali L. N. Rao*
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India, Fax: +91(512)2597532   eMail: maddali@iitk.ac.in
,
Dheeraj K. Awasthi
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India, Fax: +91(512)2597532   eMail: maddali@iitk.ac.in
,
Jalindar B. Talode
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India, Fax: +91(512)2597532   eMail: maddali@iitk.ac.in
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 03. April 2012

Accepted after revision: 05. Juni 2012

Publikationsdatum:
23. Juli 2012 (online)


Abstract

Palladium-catalyzed cross-coupling reactions of functionalized bromofurans with triarylbismuths have been described for the atom-economic synthesis of functionalized arylfuran systems. The coupling reactions using triarylbismuths with various 2-bromofurans and 2,5-dibromofuran underwent smoothly to afford the corresponding 2-arylfurans and 2,5-diarylfurans in high yields in a short reaction time (one hour).

Supporting Information

 
  • References and Notes

  • 1 Lipshutz BH. Chem. Rev. 1986; 86: 795
    • 2a Chiarello J, Joullie MM. Tetrahedron 1988; 44: 41
    • 2b Hashmi AS. K, Enns E, Frost TM, Schafer S, Frey W, Rominger F. Synthesis 2008; 2707
    • 2c Antonioletti R, D’Auria M, De Mico A, Piancatelli G, Scettri A. Tetrahedron 1985; 41: 3441
    • 2d Crawford KR, Bur SK, Straub CS, Padwa A. Org. Lett. 2003; 5: 3337
    • 2e Martin-Matute B, Nevado C, Cardenas DJ, Echavarren AM. J. Am. Chem. Soc. 2003; 125: 5757
    • 3a Hough LB, Menge WM. P. B, van de Stolpe AC, Nalwalk JW, Leurs R, de Esch IJ. P. Bioorg. Med. Chem. Lett. 2007; 17: 5715
    • 3b Ramalingan C, Lee I.-S, Kwak Y.-W. Chem. Pharm. Bull. 2009; 57: 591
    • 3c Ismail MA, Brun R, Wenzler T, Tanious FA, Wilson WD, Boykin DW. J. Med. Chem. 2004; 47: 3658
    • 3d Hosoya T, Aoyama H, Ikemoto T, Kihara Y, Hiramatsu T, Endo M, Suzuki M. Bioorg. Med. Chem. 2003; 11: 663
    • 3e Zhang J, Pettersson HI, Huitema C, Niu C, Yin J, James MN. G, Eltis LD, Vederas JC. J. Med. Chem. 2007; 50: 1850
    • 3f Moreau F, Desroy N, Genevard JM, Vongsouthi V, Gerusz V, Le Fralliec G, Oliveira C, Floquet S, Denis A, Escaich S, Wolf K, Busemann M, Aschenbrenner A. Bioorg. Med. Chem. Lett. 2008; 18: 4022
    • 3g Urbano M, Guerrero M, Zhao J, Velaparthi S, Schaeffer M.-T, Brown S, Rosen H, Roberts E. Bioorg. Med. Chem. Lett. 2011; 21: 5470
    • 3h Paquette LA, Efremov I. J. Am. Chem. Soc. 2001; 123: 4492
    • 4a Woo CH, Beaujuge PM, Holocombe TW, Lee OP, Frechet JM. J. J. Am. Chem. Soc. 2010; 132: 15547
    • 4b Lin JT, Chen P.-C, Yen Y.-S, Hsu Y.-C, Chou H.-H, Yeh M.-CP. Org. Lett. 2009; 11: 97
    • 4c Umezawa K, Matsui A, Nakamura Y, Citterio D, Suzuki K. Chem.–Eur. J. 2009; 15: 1096
    • 5a Schroter S, Stock C, Bach T. Tetrahedron 2005; 61: 2245
    • 5b Billingsley K, Buchwald SL. J. Am. Chem. Soc. 2007; 129: 3358
    • 5c Ismail MA, Boykin DW, Stephens CE. Tetrahedron Lett. 2006; 47: 795
    • 5d Molander GA, Ellis N. Acc. Chem. Res. 2007; 40: 275
    • 5e Denmark SE, Sweis RF. Acc. Chem. Res. 2002; 35: 835
    • 5f Denmark SE, Regens CS. Acc. Chem. Res. 2008; 41: 1486
    • 5g Lee K, Lee PH. Tetrahedron Lett. 2008; 49: 4302
    • 5h Jain P, Ferrence GM, Lash TD. J. Org. Chem. 2010; 75: 6563
    • 5i Haag BA, Samann C, Jana A, Knochel P. Angew. Chem. Int. Ed. 2011; 50: 7290
    • 5j Kondolff I, Doucet H, Santelli M. J. Mol. Catal. A: Chem. 2007; 269: 110
    • 6a Feuerstein M, Doucet H, Santelli M. Tetrahedron Lett. 2001; 42: 5659
    • 6b Milkiewicz KL, Parks DJ, Lu T. Tetrahedron Lett. 2003; 44: 4257
    • 6c Bussolari JC, Rehborn DC. Org. Lett. 1999; 1: 965
    • 6d Raheem M.-A, Nagireddy JR, Durham R, Tam W. Synth. Commun. 2010; 40: 2138
    • 6e Gong Y, Pauls HW. Synlett 2000; 829
  • 7 Pridgen LN, Jones SS. J. Org. Chem. 1982; 47: 1590
    • 8a Fisera L, Kovac J, Komanova E. Tetrahedron 1974; 30: 4123
    • 8b Antonioletti R, D’Auria M, D’Onofrio F, Piancatelli G, Scettri A. J. Chem. Soc., Perkin Trans. 1 1986; 1755
    • 8c Liegault B, Lapointe D, Caron L, Vlassova A, Fagnou K. J. Org. Chem. 2009; 74: 1826
    • 8d Dong JJ, Roger J, Pozgan F, Doucet H. Green Chem. 2009; 11: 1832
    • 8e Palmieri A, Gabrielli S, Ballini R. Chem. Commun. 2010; 46: 6165
    • 9a Parry PR, Bryce MR, Tarbit B. Org. Biomol. Chem. 2003; 1: 1447
    • 9b McClure MS, Roschangar F, Hodson SJ, Millar A, Osterhout MH. Synthesis 2001; 1681
    • 10a Takahashi K, Gunji A, Yanagi K, Miki M. Tetrahedron Lett. 1995; 36: 8055
    • 10b Kim S.-H, Rieke RD. Tetrahedron Lett. 2010; 51: 2657
    • 10c Rieke RD, Kim S.-H. Tetrahedron Lett. 2011; 52: 1128
    • 10d Gauthier DR. Jr, Szumigala RH, Dormer PG, Armstrong JD. III, Volante RP, Reider PJ. Org. Lett. 2002; 4: 375
  • 11 Balachari D, Quinn L, O’Doherty GA. Tetrahedron Lett. 1999; 40: 4769
  • 12 Cella R, Cunha RL. O. R, Reis AE. S, Pimenta DC, Klitzke CF, Stefani HA. J. Org. Chem. 2006; 71: 244
    • 13a Botteselle GV, Hough TL. S, Venturoso RC, Cella R, Vieira AS, Stefani AS, Stefani HA. Aust. J. Chem. 2008; 61: 870
    • 13b Stephens CE, Tanious F, Kim S, Wilson WD, Schell WA, Perfect JR, Franzblau SG, Boykin DW. J. Med. Chem. 2001; 44: 1741 and references cited therein
    • 13c Ishida H, Yui K, Aso Y, Otsubo T, Ogura F. Bull. Chem. Soc. Jpn. 1990; 63: 2828
  • 14 Tuan DT, Tung DT, Langer P. Synlett 2006; 2812
    • 15a Rao ML. N, Jadhav DN, Banerjee D. Tetrahedron 2008; 64: 5762
    • 15b Rao ML. N, Banerjee D, Jadhav DN. Tetrahedron Lett. 2007; 48: 2707
    • 15c Rao ML. N, Banerjee D, Jadhav DN. Tetrahedron Lett. 2007; 48: 6644
  • 16 Rao ML. N, Banerjee D, Dhanorkar RJ. Synlett 2011; 1324
    • 17a Feuerstein M, Doucet H, Santelli M. J. Organomet. Chem. 2003; 687: 327
    • 17b Molander GA, Sandrock DL. Org. Lett. 2007; 9: 1597
    • 17c Sato K, Ikeda K, Suzuki T, Aoyama S, Maki N, Suzuki Y, Sato M. Tetrahedron 2007; 63: 7571
    • 17d Karpov AS, Rominger F, Müller TJ. J. J. Org. Chem. 2003; 68: 1503
  • 18 Barton DH. R, Ozbalik N, Ramesh M. Tetrahedron 1988; 44: 5661
  • 19 Representative Procedure for the Cross-Coupling Reaction of 5-Bromofurfural with Ph3Bi The reaction was performed in a hot oven-dried Schlenk tube with the following reaction conditions: 5-bromofurfural (0.825 mmol, 144 mg, 3.3 equiv), Ph3Bi (0.25 mmol, 110 mg, 1.0 equiv), Pd(OAc)2 (0.025 mmol, 5.6 mg, 0.1 equiv), Cs2CO3 (0.75 mmol, 244 mg, 3.0 equiv), Ph3P (0.1 mmol, 26 mg, 0.4 equiv), dry NMP (3 mL), 90 °C, 1 h. After the reaction, it was worked up following the procedure given in ref. 16 to obtain the product 2.1.3d Analytical Data Orange liquid (0.115 g, 89%). 1H NMR (500 MHz, CDCl3): δ = 9.63 (1 H, s, CHO), 7.80–7.82 (m, 2 H, CHar), 7.30–7.44 (m, 4 H, CHar), 6.83 (d, 1 H, J = 3.7 Hz, CHar) ppm. 13C NMR (125 MHz, CDCl3): δ = 177.2, 159.4, 152.0, 129.7, 128.9, 125.3, 123.6, 107.7 ppm. IR (KBr): ν = 1671, 1435, 1210, 1040, 971, 933, 887, 784, 671 cm–1. ESI-HRMS: m/z calcd for C11H9O2 [MH] + : 173.0603; found: 173.0606. Analytical data of all the products with spectra for 2.12.10 and 3.13.8 are given in the Supporting Information.
    • 20a Trost BM, Weiss AH. Org. Lett. 2006; 8: 4461
    • 20b Gung BW, Dickson H, Shockley S. Tetrahedron Lett. 2001; 42: 4761
    • 20c Garcia J, Lopez M, Romeu J. Synlett 1999; 429
    • 20d Franz AW, Popa LN, Rominger F, Müller TJ. J. Org. Biomol. Chem. 2009; 7: 469
    • 20e Agapie T, Henling LM, DiPasquale AG, Rheingold AL, Bercaw JE. Organometallics 2008; 27: 6245
  • 21 Biscouplings of 2,5-dibromofuran were performed in a hot oven-dried Schlenk tube with the reaction conditions: 2,5-dibromofuran (0.29 mmol, 1.16 equiv), Ar3Bi (0.25 mmol, 1 equiv), Cs2CO3 (0.75 mmol, 3 equiv), Pd(OAc)2 (0.025 mmol, 0.1 equiv), Ph3 P (0.1 mmol. 0.4 equiv), dry NMP (3 mL), 90 °C, 1 h. The workup procedure was followed as given in ref. 16 to obtain 2,5-diphenylfuran (5.1).25 Analytical Data White solid (0.051 g, 80%), mp 67–69 °C. 1H NMR (500 MHz, CDCl3): δ = 7.76 (d, 4 H, J = 8.3 Hz, CHar), 7.42 (t, 4 H, J = 7.8 Hz, CHar), 7.26–7.30 (m, 2 H, CHar), 6.75 (s, 2 H, CHar) ppm. 13C NMR (125 MHz, CDCl3): δ = 153.3, 130.8, 128.7, 127.3, 123.7, 107.2 ppm. IR (KBr): ν = 1597, 1473, 1020, 914, 796, 757, 686 cm–1. ESI-HRMS: m/z calcd for C16H12O [M] + : 220.0888; found: 220.0885. Analytical data of all the products with spectra for 5.15.9 are given in the Supporting Information.
  • 22 Vachal P, Toth LM. Tetrahedron Lett. 2004; 45: 7157
  • 23 Tanaka K, Shoji T, Hirano M. Eur. J. Org. Chem. 2007; 2687
  • 24 Kramer S, Madsen JL. H, Rottländer M, Skrydstrup T. Org. Lett. 2010; 12: 2758
  • 25 Zhang M, Jiang H.-F, Neumann H, Beller M, Dixneuf PH. Angew. Chem. Int. Ed. 2009; 48: 1681
  • 26 Egi M, Azechi K, Akai S. Org. Lett. 2009; 11: 5002
  • 27 Yoshida M, Al-Amin M, Shishido K. Synthesis 2009; 2454
  • 28 Sniady A, Durham A, Morreale MS, Wheeler KA, Dembinski R. Org. Lett. 2007; 9: 1175
  • 29 Schmidt B, Geibler D. Eur. J. Org. Chem. 2011; 4814
  • 30 Rao HS. P, Jothilingam S. J. Org. Chem. 2003; 68: 5392
  • 31 De Oliveira RB, De Souza-Fagundes EM, Siqueira HA. J, Leite RS, Donnici CL, Zani CL. Eur. J. Med. Chem. 2006; 41: 756