Rofo 2012; 184(11): 1034-1042
DOI: 10.1055/s-0032-1313065
Kinderradiologie
© Georg Thieme Verlag KG Stuttgart · New York

Verzicht auf Sedierungen bei pädiatrischen MRT-Untersuchungen des Kopfes: Was ist machbar?

Dispensing with Sedation in Pediatric MR Imaging of the Brain: What is Feasible?
C. M. Heyer
1   Institut für Diagnostische Radiologie, Interventionelle Radiologie und Nuklearmedizin, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Bochum
,
S. P. Lemburg
1   Institut für Diagnostische Radiologie, Interventionelle Radiologie und Nuklearmedizin, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Bochum
,
S. Sterl
1   Institut für Diagnostische Radiologie, Interventionelle Radiologie und Nuklearmedizin, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Bochum
,
T. Holland-Letz
2   Abteilung für Medizinische Informatik, Biometrie und Epidemiologie, Ruhr-Universität Bochum
,
V. Nicolas
1   Institut für Diagnostische Radiologie, Interventionelle Radiologie und Nuklearmedizin, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Bochum
› Institutsangaben
Weitere Informationen

Publikationsverlauf

07. Juli 2011

25. Mai 2012

Publikationsdatum:
07. August 2012 (online)

Zusammenfassung

Ziel: Machbarkeitsstudie zur Frage, inwieweit die Akquisition einer diagnostischen Schädel-MRT beim Kind mit rotierend den k-Raum auslesenden BLADE-Sequenzen nach altersgerechter Patientenvorbereitung möglich ist.

Material und Methoden: Im Zeitraum 01/09 – 12/10 wurden alle zur Schädel-MRT vorgestellten Kinder eingeschlossen. Nach altersgerechter Vorbereitung wurde die MRT mit BLADE-Sequenzen in Beisein eines Elternteils ohne Sedierung akquiriert; nur bei starken Bewegungsartefakten wurden Sedierungen durchgeführt. Alle Bilder wurden durch 2 Radiologen hinsichtlich Bildqualität und Artefakten bewertet (III = sehr gut, II = diagnostisch ausreichend, I = nicht diagnostisch).

Ergebnisse: 326 Kinder (53 % männlich, DA 7,2 ± 4,3 Jahre) wurden untersucht, davon 247 (76 %) ohne Sedierung. Alle Säuglinge sowie 84 % der Einjährigen, 90 % der 2-Jährigen, 59 % der 3-Jährigen, 9 % der 4-Jährigen und 2 % der Kinder jenseits des 5. Lebensjahres mussten medikamentös sediert werden. Insgesamt wurden 2461 Sequenzen (7,6 ± 1,2 pro Studie) mit 622 BLADE-Sequenzen (25 %) akquiriert. Untersucher A bewertete 2077 Sequenzen (84 %) mit III, 318 (13 %) mit II und 66 (3 %) mit I, während Untersucher B 2119 Sequenzen (86 %) mit III, 308 (13 %) mit II und 34 (1 %) mit I bewertete. Zwischen den Untersuchern fanden sich gute bis ausgezeichnete Übereinstimmungen (einfacher/gewichteter Kappa-Wert für BLADE-Sequenzen: 0,88/0,56, für alle Sequenzen: 0,92/0,71).

Schlussfolgerung: Altersgerechte Vorbereitungen und Durchführungen von Schädel-MRT-Untersuchungen bei Kindern können die Notwendigkeit von Sedierungen reduzieren. BLADE-Sequenzen verringern Bewegungsartefakte und ermöglichen damit auch bei kleinen Kindern die Akquisition diagnostisch aussagekräftiger Bilder. Für Patienten ab dem 4. Lebensjahr sollte ein Verzicht auf Sedierungen versucht werden.

Abstract

Purpose: Feasibility study to evaluate whether a diagnostic pediatric MRI scan of the brain can be performed without sedation by using BLADE sequences with rotating blade-like k-space covering.

Materials and Methods: Between 01/09 and 12/10 all children with a planned MRI of the brain were included. After age-dependent preparation of the child the MRI was acquired with a parent closely attending. Pharmacological sedation was only applied when strong motion artifacts occurred. All MRI sequences were independently reviewed by 2 radiologists who ranked image quality on a scale of III (excellent image quality, no motion artefacts), II (motion artefacts but still diagnostic quality), and I (non-diagnostic image quality).

Results: 326 children (53 % male, mean age 7.2 ± 4.3 years) were evaluated of whom 247 (76 %) had to be sedated. All infants < 1 year and 84 % of 1-year-old patients, 90 % of 2-year-old, 59 % of 3-year-old, 9 % of 4-year-old children, and 2 % of patients older than 4 years had to be sedated. In total, 2461 MRI sequences (7.6 ± 1.2 per study) including 622 BLADE sequences (25 %) were acquired. Reviewer A rated 2077 sequences (84 %) as III, 318 (13 %) as II, and 66 (3 %) as I, whereas reviewer B rated 2119 sequences (86 %) as III, 308 (13 %) as II, and 34 (1 %) as I. Inter-observer agreement was good to excellent (normal/weighted kappa value for BLADE sequences: 0.88/0.56, for all sequences: 0.92/0.71).

Conclusion: Age-adjusted preparation and implementation of a pediatric cranial MRI may reduce the need for sedation. BLADE sequences abate motion artefacts thus enabling acquisition of diagnostic images even in young children. In patients older than 3 years, performance of MRI scans without sedation should be considered.

 
  • Literatur

  • 1 Hohl C, Boese J, Strobel N et al. VO 304.2 Angiographische CT: Messung der Patientendosis. Deutscher Röntgenkongress; 2008
  • 2 Adamietz B, Cavallaro A, Radkow T et al. Untersuchungstoleranz von Kindern und Adoleszenten in einem 1,5 Tesla MR-Tomografen mit offenem Magnetdesign. Fortschr Röntgenstr 2007; 179: 826-831
  • 3 Steinborn M, Wortler K, Nathrath M et al. Ganzkörper-MRT bei Langerhans-Zell-Histiozytose im Kindes- und Jugendalter zur Beurteilung des Skelettsystems. Fortschr Röntgenstr 2008; 180: 646-653
  • 4 Fenchel M, Hauser TK, Nagele T et al. Metachromatische Leukodystrophie (MLD): MRT-Befunde. Fortschr Röntgenstr 2011; 183: 893-895
  • 5 Reiss-Zimmermann M, Sorge I, Sterker I et al. MRT-Bildgebung von Orbitaerkrankungen im Kindesalter. Fortschr Röntgenstr 2011; 183: 781-787
  • 6 Girard NJ. Cerebral malformations without antenatal diagnosis. Pediatr Radiol 2010; 40: 834-843
  • 7 Ashwal S, Wycliffe ND, Holshouser BA. Advanced neuroimaging in children with nonaccidental trauma. Dev Neurosci 2010; 32: 343-360
  • 8 Shahzad K, Hamid MH, Khan MA et al. Brain abscess in children. J Coll Physicians Surg Pak 2005; 15: 609-611
  • 9 Saez-Llorens X. Brain abscess in children. Semin Pediatr Infect Dis 2003; 14: 108-114
  • 10 Eran A, Ozturk A, Aygun N et al. Medulloblastoma: atypical CT and MRI findings in children. Pediatr Radiol 2010; 40: 1254-1262
  • 11 Huisman TA, Singhi S, Pinto PS. Non-invasive imaging of intracranial pediatric vascular lesions. Childs Nerv Syst 2010; 26: 1275-1295
  • 12 Vanderby SA, Babyn PS, Carter MW et al. Effect of anesthesia and sedation on pediatric MR imaging patient flow. Radiology 2010; 256: 229-237
  • 13 Wachtel RE, Dexter F, Dow AJ. Growth rates in pediatric diagnostic imaging and sedation. Anesth Analg 2009; 108: 1616-1621
  • 14 Mallory MD, Baxter AL, Kost SI. Propofol vs. pentobarbital for sedation of children undergoing magnetic resonance imaging: results from the Pediatric Sedation Research Consortium. Paediatr Anaesth 2009; 19: 601-611
  • 15 Low E, O'Driscoll M, MacEneaney P et al. Sedation with oral chloral hydrate in children undergoing MRI scanning. Ir Med J 2008; 101: 80-82
  • 16 Serafini G, Zadra N. Anaesthesia for MRI in the paediatric patient. Curr Opin Anaesthesiol 2008; 21: 499-503
  • 17 Dearlove O, Corcoran JP. Sedation of children undergoing magnetic resonance imaging. Br J Anaesth 2007; 98: 548-549
  • 18 Cengiz M, Baysal Z, Ganidagli S. Oral sedation with midazolam and diphenhydramine compared with midazolam alone in children undergoing magnetic resonance imaging. Paediatr Anaesth 2006; 16: 621-626
  • 19 Pershad J, Wan J, Anghelescu DL. Comparison of propofol with pentobarbital/midazolam/fentanyl sedation for magnetic resonance imaging of the brain in children. Pediatrics 2007; 120: e629-636
  • 20 Serafini G, Ongaro L, Mori A et al. Anesthesia for MRI in the paediatric patient. Minerva Anestesiol 2005; 71: 361-366
  • 21 Koch BL. Avoiding sedation in pediatric radiology. Pediatr Radiol 2008; 38 (Suppl. 02) S225-226
  • 22 de Bie HM, Boersma M, Wattjes MP et al. Preparing children with a mock scanner training protocol results in high quality structural and functional MRI scans. Eur J Pediatr 2010; 169: 1079-1085
  • 23 Nordahl CW, Simon TJ, Zierhut C et al. Brief report: methods for acquiring structural MRI data in very young children with autism without the use of sedation. J Autism Dev Disord 2008; 38: 1581-1590
  • 24 de Amorim e Silva CJ, Mackenzie A, Hallowell LM et al. Practice MRI: reducing the need for sedation and general anaesthesia in children undergoing MRI. Australas Radiol 2006; 50: 319-323
  • 25 Ashley Jr WW, McKinstry RC, Leonard JR et al. Use of rapid-sequence magnetic resonance imaging for evaluation of hydrocephalus in children. J Neurosurg 2005; 103: 124-130
  • 26 Singh RK, Smith JT, Wilkinson ID et al. Ultrafast MR imaging in pediatric neuroradiology. Acta Radiol 2003; 44: 550-557
  • 27 Alkan O, Kizilkilic O, Yildirim T et al. Comparison of contrast-enhanced T1-weighted FLAIR with BLADE, and spin-echo T1-weighted sequences in intracranial MRI. Diagn Interv Radiol 2009; 15: 75-80
  • 28 Alibek S, Adamietz B, Cavallaro A et al. Contrast-enhanced T1-weighted fluid-attenuated inversion-recovery BLADE magnetic resonance imaging of the brain: an alternative to spin-echo technique for detection of brain lesions in the unsedated pediatric patient?. Acad Radiol 2008; 15: 986-995
  • 29 Naganawa S, Satake H, Iwano S et al. Contrast-enhanced MR imaging of the brain using T1-weighted FLAIR with BLADE compared with a conventional spin-echo sequence. Eur Radiol 2008; 18: 337-342
  • 30 Forbes KP, Pipe JG, Karis JP et al. Brain imaging in the unsedated pediatric patient: comparison of periodically rotated overlapping parallel lines with enhanced reconstruction and single-shot fast spin-echo sequences. Am J Neuroradiol 2003; 24: 794-798
  • 31 von Kalle T, Blank B, Fabig-Moritz C et al. Reduced artefacts and improved assessment of hyperintense brain lesions with BLADE MR imaging in patients with neurofibromatosis type 1. Pediatr Radiol 2009; 39: 1216-1222
  • 32 Cote CJ, Notterman DA, Karl HW et al. Adverse sedation events in pediatrics: a critical incident analysis of contributing factors. Pediatrics 2000; 105: 805-814
  • 33 Siddappa R, Riggins J, Kariyanna S et al. High-dose dexmedetomidine sedation for pediatric MRI. Paediatr Anaesth 2011; 21: 153-158
  • 34 Hassan NE, Betz BW, Cole MR et al. Randomized controlled trial for intermittent versus continuous propofol sedation for pediatric brain and spine magnetic resonance imaging studies. Pediatr Crit Care Med 2011; 12: e262-e265
  • 35 Cho JE, Kim WO, Chang DJ et al. Titrated propofol induction vs. continuous infusion in children undergoing magnetic resonance imaging . Acta Anaesthesiol Scand 2010; 54: 453-457
  • 36 Maruf AA, Hossain MD, Ahmed M et al. Procedural sedation in children for magnetic resonance imaging – comparison between ketamine diazepam combination with midazolam fentanyl combination. Mymensingh Med J 2010; 19: 60-65
  • 37 Abdallah C, Hannallah R, Patel K. MR-compatible pumps versus manual titration of propofol for pediatric sedation. J Med Eng Technol 2010; 35: 443-447
  • 38 Gemma M, de Vitis A, Baldoli C et al. Functional magnetic resonance imaging (fMRI) in children sedated with propofol or midazolam. J Neurosurg Anesthesiol 2009; 21: 253-258
  • 39 Mason KP, Zurakowski D, Zgleszewski SE et al. High dose dexmedetomidine as the sole sedative for pediatric MRI. Paediatr Anaesth 2008; 18: 403-411
  • 40 Cravero JP, Beach ML, Blike GT et al. The incidence and nature of adverse events during pediatric sedation/anesthesia with propofol for procedures outside the operating room: a report from the Pediatric Sedation Research Consortium. Anesth Analg 2009; 108: 795-804
  • 41 Rosenberg DR, Sweeney JA, Gillen JS et al. Magnetic resonance imaging of children without sedation: preparation with simulation. J Am Acad Child Adolesc Psychiatry 1997; 36: 853-859
  • 42 Raschle NM, Lee M, Buechler R et al. Making MR imaging child's play – pediatric neuroimaging protocol, guidelines and procedure. J Vis Exp 2009; 30: 1309
  • 43 Pipe JG. Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 1999; 42: 963-969
  • 44 Michaely HJ, Kramer H, Weckbach S et al. Renal T2-weighted turbo-spin-echo imaging with BLADE at 3.0 Tesla: initial experience. J Magn Reson Imaging 2008; 27: 148-153
  • 45 Deng J, Miller FH, Salem R et al. Multishot diffusion-weighted PROPELLER magnetic resonance imaging of the abdomen. Invest Radiol 2006; 41: 769-775
  • 46 Nanko S, Oshima H, Watanabe T et al. Usefulness of the application of the BLADE technique to reduce motion artifacts on navigation-triggered prospective acquisition correction (PACE) T2-weighted MRI (T2WI) of the liver. J Magn Reson Imaging 2009; 30: 321-326
  • 47 Wintersperger BJ, Runge VM, Biswas J et al. Brain magnetic resonance imaging at 3 Tesla using BLADE compared with standard rectilinear data sampling. Invest Radiol 2006; 41: 586-592
  • 48 Vertinsky AT, Rubesova E, Krasnokutsky MV et al. Performance of PROPELLER relative to standard FSE T2-weighted imaging in pediatric brain MRI. Pediatr Radiol 2009; 39: 1038-1047