Subscribe to RSS
DOI: 10.1055/s-0032-1313059
Non-invasive Determination of Myocardial Lipid Content in Fabry Disease by 1H-MR Spectroscopy
Nicht invasive Bestimmung des myokardialen Lipidgehalts bei Morbus Fabry mit 1H-MR-SpektroskopiePublication History
09 February 2012
23 May 2012
Publication Date:
14 August 2012 (online)
Abstract
Purpose: In Fabry disease (FD), a progressive deposition of sphingolipids is reported in different organs. The present study applied 1H magnetic resonance spectroscopy (MRS) to investigate the myocardial lipid content in FD.
Materials and Methods: In patients (PTS, n = 15) with genetically proven FD, 1H MRS of the heart was acquired in the same examination as routine cardiac cine and late enhancement MR imaging. Healthy volunteers (n = 11) without history of cardiac disease served as control (CTL). Myocardial triglycerides in vivo were quantified in 1H MRS. Left ventricular (LV) ejection fraction (EF) and late enhancement were assessed for the determination of LV systolic function, and onset or absence of myocardial fibrosis.
Results: All 1H MRS revealed resonances for intramyocardial triglycerides. Clinical parameters, e. g. EF (PTS 64 ± 2 % vs. CTL 61 ± 1 %) were similar in PTS and CTL or showed a non-significant trend (LV mass). Apart from a single patient with elevated myocardial triglycerides, no significant impact of Fabry disease on the triglyceride/water resonance ratio (PTS 0.47 ± 0.11 vs. CTL 0.52 ± 0.11 %) was observed in our patient cohort.
Conclusion: A comprehensive cardiac evaluation of morphology, function as well as metabolism in Fabry PTS with suspected cardiac involvement is feasible in a single examination. No significant effect of myocardial triglyceride deposition could be observed in patients. The remarkably high myocardial triglyceride content in one patient with advanced FD warrants further studies in PTS with an extended history of the disease.
Zusammenfassung
Ziel: Bei Morbus Fabry (MF) wird eine progressive Ablagerung von Sphingolipiden in versch. Organen berichtet. Mittels der kardialen 1H-Magnetresonanzspektroskopie (MRS) wurde in der vorliegenden Studie der myokardiale Triglycerid-Anteil in Patienten (PTS) untersucht.
Material und Methoden: In PTS (n = 15) mit gesichertem MF wurde eine kardiale 1H-MRS zusammen mit Routine cineMRI- und Late-Enhancement(LE)-Aufnahmen durchgeführt. Gesunde Probanden (n = 11) ohne kardiale Vorerkrankungen dienten als Kontrolle (CTL). Myokardiale Triglyzeride wurden durch in vivo 1H-MRS quantifiziert. Linksventrikuläre (LV) Ejektionsfraktion (EF) und LE-Aufnahmen dienten zur Evaluation der systolischen LV-Funktion und dem Vorliegen einer myokardialen Fibrose.
Ergebnisse: Intramyokardiale Triglyzeride konnten in allen 1H-MRS beobachtet werden. Klinische Parameter, z. B. EF (PTS 64 ± 2 % vs. CTL 61 ± 1 %) waren ähnlich in beiden Gruppen bzw. zeigten einen nicht signifikanten Trend für die LV-Masse. Abgesehen von einem Patienten mit erhöhten myokardialen Triglyzeriden konnte kein signifikanter Einfluss auf das Triglyzerid/Wasser-Resonanz-Verhältnis (PTS 0,47 ± 0,11 vs. CTL 0,52 ± 0,11 %) bei MF nachgewiesen werden.
Schlussfolgerung: Cine MRI in Kombination mit LE-Aufnahmen und 1H-MRS ermöglicht die Beurteilung der kardialen Morphologie, Funktion und des kardialen Metabolismus von MF PTS in einer singulären Untersuchung. Der bemerkenswert hohe myokardiale Triglyzerid-Anteil in einem Patienten mit prolongiertem Krankheitsverlauf macht weitere Untersuchungen bei PTS mit fortgeschrittenem Krankheitsstadium notwendig.
-
References
- 1 Desnick RJ, Banikazemi M. Fabry disease: clinical spectrum and evidence-based enzyme replacement therapy. Nephrol Ther 2006; 2: S172-S185
- 2 Breunig F, Weidemann F, Beer M et al. Fabry disease: diagnosis and treatment. Kidney Int Suppl 2003; 63: S181-S185
- 3 Beer M, Weidemann F, Breunig F et al. Impact of enzyme replacement therapy on cardiac morphology and function and late enhancement in Fabry’s cardiomyopathy. Am J Cardiol 2006; 97: 1515-1518
- 4 Moon JC, Sachdev B, Elkington AG et al. Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium. Eur Heart J 2003; 24: 2151-2155
- 5 Silva C, Moon JC, Elkington AG et al. Myocardial late gadolinium enhancement in specific cardiomyopathies by cardiovascular magnetic resonance: a preliminary experience. J Cardiovasc Med 2007; 8: 1076-1079
- 6 Lucke T, Hoppner W, Schmidt E et al. Fabry disease: reduced activities of respiratory chain enzymes with decreased levels of energy-rich phosphates in fibroblasts. Mol Genet Metab 2004; 82: 93-97
- 7 Takenaka T, Teraguchi H, Yoshida A et al. Terminal stage cardiac findings in patients with cardiac Fabry disease: an electrocardiographic, echocardiographic, and autopsy study. J Cardiol 2008; 51: 50-59
- 8 Laser JA, Fowles RE, Mason JW. Endomyocardial biopsy. Cardiovasc Clin 1985; 15: 141-163
- 9 Yilmaz A, Kindermann I, Kindermann M et al. Comparative evaluation of left and right ventricular endomyocardial biopsy: differences in complication rate and diagnostic performance. Circulation 2010; 122: 900-909
- 10 den Hollander JA, Evanochko WT, Pohost GM. Observation of cardiac lipids in humans by localized 1H magnetic resonance spectroscopic imaging. Magn Reson Med 1994; 32: 175-180
- 11 O’Connor RD, Xu J, Ewald GA et al. Intramyocardial triglyceride quantification by magnetic resonance spectroscopy: In vivo and ex vivo correlation in human subjects. Magn Reson Med 2011; 65: 1234-1238
- 12 van der Meer RW, Doornbos J, Kozerke S et al. Metabolic imaging of myocardial triglyceride content: reproducibility of 1H MR spectroscopy with respiratory navigator gating in volunteers. Radiology 2007; 245: 251-257
- 13 Schar M, Kozerke S, Boesiger P. Navigator gating and volume tracking for double-triggered cardiac proton spectroscopy at 3 Tesla. Magn Reson Med 2004; 51: 1091-1095
- 14 McGavock JM, Lingvay I, Zib I et al. Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation 2007; 116: 1170-1175
- 15 Al-Fadhli A, Wahidulla S, D’Souza L. Glycolipids from the red alga Chondria armata (Kutz Okamura). Glycobiology 2006; 16: 902-915
- 16 Simonetti OP, Kim RJ, Fieno DS et al. An improved MR imaging technique for the visualization of myocardial infarction. Radiology 2001; 218: 215-223
- 17 Szczepaniak LS, Dobbins RL, Metzger GJ et al. Myocardial triglycerides and systolic function in humans: in vivo evaluation by localized proton spectroscopy and cardiac imaging. Magn Reson Med 2003; 49: 417-423
- 18 Strobel K, van den Hoff J, Pietzsch J. Localized proton magnetic resonance spectroscopy of lipids in adipose tissue at high spatial resolution in mice in vivo. J Lipid Res 2008; 49: 473-480
- 19 Desnick RJ, Brady R, Barranger J et al. Fabry disease, an under-recognized multisystemic disorder: expert recommendations for diagnosis, management, and enzyme replacement therapy. Ann Intern Med 2003; 138: 338-346
- 20 Kalliokoski RJ, Kalliokoski KK, Sundell J et al. Impaired myocardial perfusion reserve but preserved peripheral endothelial function in patients with Fabry disease. J Inherit Metab Dis 2005; 28: 563-573
- 21 Machann W, Breunig F, Weidemann F et al. Cardiac energy metabolism is disturbed in Fabry disease and improves with enzyme replacement therapy using recombinant human galactosidase A. Eur J Heart Fail 2011; 13: 278-283
- 22 Cikes M, Sutherland GR, Anderson LJ et al. The role of echocardiographic deformation imaging in hypertrophic myopathies. Nat Rev Cardiol 2010; 7: 384-396
- 23 Rijzewijk LJ, van der Meer RW, Smit JW et al. Myocardial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus. J Am Coll Cardiol 2008; 52: 1793-1799
- 24 van der Meer RW, Rijzewijk LJ, de Jong HW et al. Pioglitazone improves cardiac function and alters myocardial substrate metabolism without affecting cardiac triglyceride accumulation and high-energy phosphate metabolism in patients with well-controlled type 2 diabetes mellitus. Circulation 2009; 119: 2069-2077
- 25 White LJ, Ferguson MA, McCoy SC et al. Cardiovascular/non-insulin-dependent diabetes mellitus risk factors and intramyocellular lipid in healthy subjects: a sex comparison. Metabolism 2006; 55: 128-134
- 26 Schrauwen-Hinderling VB, Hesselink MK, Meex R et al. Improved ejection fraction after exercise training in obesity is accompanied by reduced cardiac lipid content. J Clin Endocrinol Metab 2010; 95: 1932-1938
- 27 Torriani M, Thomas BJ, Halpern EF et al. Intramyocellular lipid quantification: repeatability with 1H MR spectroscopy. Radiology 2005; 236: 609-614
- 28 Madhu B, Robinson SP, Howe FA et al. Effect of Gd-DTPA-BMA on choline signals of HT29 tumors detected by in vivo 1H MRS. J Magn Reson Imaging 2008; 28: 1201-1208
- 29 Rial B, Robson MD, Neubauer S et al. Rapid quantification of myocardial lipid content in humans using single breath-hold 1H MRS at 3 Tesla. Magn Reson Med 2011; 66: 619-624
- 30 Nakagawa Y, Hattori M, Harada K et al. Age-related changes in intramyocellular lipid in humans by in vivo H-MR spectroscopy. Gerontology 2007; 53: 218-223
- 31 Reingold JS, McGavock JM, Kaka S et al. Determination of triglyceride in the human myocardium by magnetic resonance spectroscopy: reproducibility and sensitivity of the method. Am J Physiol Endocrinol Metab 2005; 289: E935-E939