Subscribe to RSS
DOI: 10.1055/s-0032-1312923
Sonoelastography as a Diagnostic Tool in the Assessment of Musculoskeletal Alterations: A Systematic Review
Sonoelastografie als Diagnoseverfahren, um muskuloskelettale Veränderungen zu beurteilen: eine systematische ÜbersichtPublication History
10 September 2011
02 May 2012
Publication Date:
28 June 2012 (online)
Abstract
Elasticity imaging is a relatively new ultrasound-based technique for investigating musculoskeletal injury. Sonoelastography (SEL), the most commonly used technique, allows determination of the elastic properties of tissue by applying pressure.
Purpose: To critically evaluate the literature regarding the use of SEL in the diagnosis of tendon and muscle alterations.
Materials and Methods: This review includes a systematic literature search performed on major electronic databases. Eight articles were included. The GRADE approach was used to evaluate the quality of evidence presented in the included articles and the strength of their recommendations.
Results: The results on human tendon disorders showed that the SEL findings correlated extremely well with conventional ultrasound (US) findings as well as with magnetic resonance imaging (MRI) and clinical examination. In some articles SEL was found to be even more sensitive than conventional ultrasound and in addition capable of identifying subclinical alterations that conventional ultrasound could not. For skeletal muscle, a close correlation between SEL and US and MRI was found, although there is only one article on the topic. SEL was found to be able to distinguish between healthy and diseased muscles and was potentially more sensitive in identifying early dystrophic changes than US or MRI.
Conclusion: Based on this critical evaluation of the literature, SEL seems to be at least as feasible as US and MRI for assessing tendon alterations and able to identify subclinical tendon alterations not visible with conventional US. The findings in the reviewed articles suggest that SEL could become a supplementary imaging technique in the assessment of musculoskeletal alterations, potentially superior to US and MRI. Until more studies are available, SEL has to be viewed as an experimental examination without sufficient supporting evidence to be used as a routine examination equivalent to US and MRI.
Zusammenfassung
Die Darstellung der Elastizität ist eine relativ neue ultraschallbasierte Technik, um muskuloskelettale Verletzungen zu untersuchen. Die Sonoelastografie (SEL) ist die am häufigsten verwendete Technik, indem sie die Bestimmung der elastischen Eigenschaften von Geweben durch die Anwendung von Druck ermöglicht.
Ziel: Die kritische Bewertung der Literatur in Bezug auf den Einsatz von SEL bei der Diagnose von Veränderungen an Sehnen und Muskeln.
Material und Methoden: Diese Übersicht umfasst eine systematische Literatursuche, die mit den wichtigsten elektronischen Datenbanken durchgeführt wurde. 8 Publikationen wurden ausgewählt. Der GRADE-approach wurde verwendet, um die Qualität der Beweise, die in den eingeschlossenen Artikeln präsentiert werden, und den Härtegrad zu beurteilen.
Ergebnisse: Die Ergebnisse bei den menschlichen Sehnenerkrankungen zeigten, dass die SEL-Befunde äußerst gut mit der konventionellen Sonografie (US) sowie mit der Kernspintomografie (MRI) und der klinischen Untersuchung korrelieren. In einigen Artikeln wurde die SEL sogar noch sensitiver als der konventionelle Ultraschall bewertet und war in der Lage, Veränderungen festzustellen, die mittels herkömmlichen US nicht zu entdecken waren. Beim Skelettmuskel wurde eine enge Übereinstimmung zwischen SEL, US und MRI gefunden, obwohl es nur eine einzige Publikation auf diesem Gebiet gab. Die SEL war in der Lage, zwischen gesunden und erkrankten Muskeln zu differenzieren, und erwies sich bei der Feststellung früher dystrophischer Veränderungen unter Umständen sensitiver als US und MRI.
Schlussfolgerung: Aufgrund der kritischen Durchsicht der Literatur scheint die SEL eine mindestens ebenso praktikable Technik wie US und MRI zu sein, um Veränderungen der Sehnen zu bewerten, und kann subklinische Sehnenveränderungen, die im herkömmlichen US nicht sichtbar sind, feststellen. Die Befunde in den begutachteten Artikeln legen nahe, dass die SEL ein ergänzendes, dem US und MRI möglicherweise überlegenes, bildgebendes Verfahren für die Bewertung muskuloskelettaler Veränderungen ist. Bis weitere Studien verfügbar sind, muss die SEL gleichberechtigt zu US und MRI als experimentelle Untersuchung ohne ausreichend unterstützende Beweise angesehen werden.
-
References
- 1 Ekstrand J, Hagglund M, Walden M. Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med 2011; 39: 1226-1232
- 2 Newman JS, Newberg AH. Basketball injuries. Radiol Clin North Am 2010; 48: 1095-1111
- 3 Slavotinek JP. Muscle injury: the role of imaging in prognostic assignment and monitoring of muscle repair. Semin Musculoskelet Radiol 2010; 14: 194-200
- 4 Klauser AS, Faschingbauer R, Jaschke WR. Is sonoelastography of value in assessing tendons?. Semin Musculoskelet Radiol 2010; 14: 323-333
- 5 Sconfienza LM, Silvestri E, Cimmino MA. Sonoelastography in the evaluation of painful Achilles tendon in amateur athletes. Clin Exp Rheumatol 2010; 28: 373-378
- 6 McCullough MB, Domire ZJ, Reed AM et al. Evaluation of muscles affected by myositis using magnetic resonance elastography. Muscle Nerve 2011; 43: 585-590
- 7 Park GY, Kwon DR. Application of Real-Time Sonoelastography in Musculoskeletal Diseases Related to Physical Medicine and Rehabilitation. Am J Phys Med Rehabil 2011; 11: 875-886
- 8 Niitsu M, Michizaki A, Endo A et al. Muscle hardness measurement by using ultrasound elastography: a feasibility study. Acta Radiol 2011; 52: 99-105
- 9 Xu Y, Murrell GA. The basic science of tendinopathy. Clin Orthop Relat Res 2008; 466: 1528-1538
- 10 Longo UG, Ronga M, Maffulli N. Achilles tendinopathy. Sports Med Arthrosc 2009; 17: 112-126
- 11 Pickerell DM. Elastography: imaging of tomorrow?. Journal of Diagnostic Medical Sonography 2010; 26: 109-115
- 12 Gong X, Xu Q, Xu Z et al. Real-time elastography for the differentiation of benign and malignant breast lesions: a meta-analysis. Breast Cancer Res Treat 2011; 130: 11-18
- 13 Adamietz BR, Meier-Meitinger M, Fasching P et al. New diagnostic criteria in real-time elastography for the assessment of breast lesions. Ultraschall in Med 2011; 32: 67-73
- 14 Sporea I, Sirli RL, Deleanu A et al. What did we learn from the first 3,459 cases of liver stiffness measurement by transient elastography (FibroScan®)?. Ultraschall in Med 2011; 32: 40-45
- 15 Brock M, von Bodman C, Sommerer F et al. Comparison of real-time elastography with grey-scale ultrasonography for detection of organ-confined prostate cancer and extra capsular extension: a prospective analysis using whole mount sections after radical prostatectomy. BJU Int 2011; 108: E217-E222
- 16 Saftoiu A, Vilmann P, Hassan H et al. Analysis of endoscopic ultrasound elastography used for characterisation and differentiation of benign and malignant lymph nodes. Ultraschall in Med 2006; 27: 535-542
- 17 Ying L, Hou Y, Zheng HM et al. Real-time elastography for the differentiation of benign and malignant superficial lymph nodes: A meta-analysis. Eur J Radiol 2011; [Epub ahead of print]
- 18 Miyanaga N, Akaza H, Yamakawa M et al. Tissue elasticity imaging for diagnosis of prostate cancer: a preliminary report. Int J Urol 2006; 13: 1514-1518
- 19 Janssen J, Schlorer E, Greiner L. EUS elastography of the pancreas: feasibility and pattern description of the normal pancreas, chronic pancreatitis, and focal pancreatic lesions. Gastrointest Endosc 2007; 65: 971-978
- 20 Kim K, Johnson LA, Jia C et al. Noninvasive ultrasound elasticity imaging (UEI) of Crohn’s disease: animal model. Ultrasound Med Biol 2008; 34: 902-912
- 21 Ishikawa D, Ando T, Watanabe O et al. Images of colonic real-time tissue sonoelastography correlate with those of colonoscopy and may predict response to therapy in patients with ulcerative colitis. BMC Gastroenterol 2011; 11: 29
- 22 Goddi A, Sacchi A, Magistretti G et al. Real-time tissue elastography for testicular lesion assessment. Eur Radiol 2012; 22: 721-730
- 23 Rubaltelli L, Corradin S, Dorigo A et al. Differential diagnosis of benign and malignant thyroid nodules at elastosonography. Ultraschall in Med 2009; 30: 175-179
- 24 Merino S, Arrazola J, Cardenas A et al. Utility and Interobserver Agreement of Ultrasound Elastography in the Detection of Malignant Thyroid Nodules in Clinical Care. Am J Neuroradiol 2011; 32: 2142-2148
- 25 Frey H. Realtime elastography. A new ultrasound procedure for the reconstruction of tissue elasticity. Radiologe 2003; 43: 850-855
- 26 Molina F, Gomez L, Florido J et al. Quantification of cervical elastography. A reproducibility study. Ultrasound Obstet Gynecol 2012; 39: 685-689
- 27 Garra BS. Imaging and estimation of tissue elasticity by ultrasound. Ultrasound Q 2007; 23: 255-268
- 28 Klauser AS, Peetrons P. Developments in musculoskeletal ultrasound and clinical applications. Skeletal Radiol 2010; 39: 1061-1071
- 29 Taylor LS, Porter BC, Rubens DJ et al. Three-dimensional sonoelastography: principles and practices. Phys Med Biol 2000; 45: 1477-1494
- 30 Melodelima D, Bamber JC, Duck FA et al. Transient elastography using impulsive ultrasound radiation force: a preliminary comparison with surface palpation elastography. Ultrasound Med Biol 2007; 33: 959-969
- 31 De Zordo T, Chhem R, Smekal V et al. Real-time sonoelastography: findings in patients with symptomatic achilles tendons and comparison to healthy volunteers. Ultraschall in Med 2010; 31: 394-400
- 32 De Zordo T, Fink C, Feuchtner GM et al. Real-time sonoelastography findings in healthy Achilles tendons. Am J Roentgenol 2009; 193: W134-W138
- 33 De Zordo T, Lill SR, Fink C et al. Real-time sonoelastography of lateral epicondylitis: comparison of findings between patients and healthy volunteers. Am J Roentgenol 2009; 193: 180-185
- 34 Atkins D, Best D, Briss PA et al. Grading quality of evidence and strength of recommendations. BMJ 2004; 328: 1490
- 35 Brozek JL, Akl EA, Alonso-Coello P et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines. Part 1 of 3. An overview of the GRADE approach and grading quality of evidence about interventions. Allergy 2009; 64: 669-677
- 36 Brozek JL, Akl EA, Jaeschke R et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines: Part 2 of 3. The GRADE approach to grading quality of evidence about diagnostic tests and strategies. Allergy 2009; 64: 1109-1116
- 37 Brozek JL, Akl EA, Compalati E et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines. Part 3 of 3. The GRADE approach to developingrecommendations. Allergy 2011; 66: 588-595
- 38 Drakonaki EE, Allen GM, Wilson DJ. Real-time ultrasound elastography of the normal Achilles tendon: reproducibility and pattern description. Clin Radiol 2009; 64: 1196-1202
- 39 Drakonaki EE, Allen GM. Magnetic resonance imaging, ultrasound and real-time ultrasound elastography of the thigh muscles in congenital muscle dystrophy. Skeletal Radiol 2010; 39: 391-396
- 40 Ariji Y, Katsumata A, Hiraiwa Y et al. Use of sonographic elastography of the masseter muscles for optimizing massage pressure: a preliminary study. J Oral Rehabil 2009; 36: 627-635
- 41 Detorakis ET, Drakonaki EE, Tsilimbaris MK et al. Real-time ultrasound elastographic imaging of ocular and periocular tissues: a feasibility study. Ophthalmic Surg Lasers Imaging 2010; 41: 135-141
- 42 Fredberg U, Bolvig L, Andersen NT et al. Ultrasonography in evaluation of Achilles and patella tendon thickness. Ultraschall in Med 2008; 29: 60-65