Aktuelle Dermatologie 2012; 38(10): 379-385
DOI: 10.1055/s-0032-1310149
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Komponentenbasierte Diagnostik von Nahrungsmittelallergien

Component-Resolved Diagnostics in the Investigation of Food Allergies
G. Wurpts
Klinik für Dermatologie und Allergologie, Universitätsklinikum RWTH Aachen
› Author Affiliations
Further Information

Publication History

Publication Date:
01 August 2012 (online)

Zusammenfassung

Jeder Dritte in unserer Bevölkerung vermutet unter einer Nahrungsmittelallergie zu leiden, hieraus ergibt sich die Erfordernis einer aussagekräftigen, zeitsparenden und kostengünstigen Diagnostik. Die zunehmende Identifikation von Einzelallergenen und die Möglichkeit, ihr spezifisches IgE im Rahmen der komponentenbasierten Diagnostik nachzuweisen, hat die Rolle der In-vitro-Diagnostik hervorgehoben und ihre Sensitivität deutlich verbessert. Die Einteilung der Allergene ist nicht mehr nur ihrem biologischen Ursprung nach möglich, sondern auch gemäß ihrer Struktur in Allergenfamilien, wodurch mögliche Kreuzreaktivitäten erklärt werden können. Zudem ergeben sich durch die neu identifizierten Einzelallergene Unterscheidungshilfen zwischen klinisch irrelevanter Sensibilisierung sowie klinisch relevanter Allergie. In diesem Artikel werden bedeutende Allergenfamilien sowie Beispiele der komponentenbasierten Diagnostik anhand verschiedener Nahrungsmittel präsentiert.

Abstract

Food allergies are very common. Therefore, there is a great need for accurate and timesaving diagnostic tools. Recently, component-resolved diagnostics (CRD) of allergen specific IgE have been introduced. CRD is based on new findings on the biological structure of single allergens improving the sensitivity of in vitro diagnostics. Allergens can be grouped in protein families giving insights into possible cross-reactivity and helping to distinguish between clinically relevant and irrelevant sensitisations. In this article important protein families and examples for CRD in clinical practice are presented.

 
  • Literatur

  • 1 Rona RJ et al. The prevalence of food allergy: a meta-analysis. J Allergy Clin Immunol 2007; 120 (Suppl. 03) 638-646
  • 2 Zuidmeer L et al. The prevalence of plant food allergies: a systematic review. J Allergy Clin Immunol 2008; 121 (Suppl. 05) 1210-1218
  • 3 Fernandez-Rivas M et al. Apple allergy across Europe: how allergen sensitization profiles determine the clinical expression of allergies to plant foods. J Allergy Clin Immunol 2006; 118 (Suppl. 02) 481-488
  • 4 King TP et al. Allergen nomenclature. WHO/IUIS Allergen Nomenclature Subcommittee. Int Arch Allergy Immunol 1994; 105 (Suppl. 03) 224-233
  • 5 Marsh DG et al. Allergen nomenclature. Bull World Health Organ 1986; 64 (Suppl. 05) 767-774
  • 6 Kleine-Tebbe J, Ollert M, Jakob T. Nomenklatur, Proteinfamilien, Datenbanken und potenzieller Nutzen. Allergo Journal 2010; 19: 390-394
  • 7 Kleine-Tebbe J, Meißner A, Jappe U et al. Allergenfamilien und molekulare Diagnostik IgE-vermittelter Nahrungsmittelallergien: von der Theorie zur Praxis. Allergo Journal 2010; 19: 251-263
  • 8 Kleine-Tebbe J, Ballmer-Weber BK, Breiteneder H et al. Bet v 1 und Homologe – Verursacher der Baumpollenallergie und birkenpollenassoziierter Kreuzreaktionen. Allergo Journal 2010; 19: 462-463
  • 9 Henzgen M, Vieths S, Reese I et al. Nahrungsmittelallergien durch immunologische Kreuzreaktionen. Leitlinie der Arbeitsgruppe Nahrungsmittelallergie der Deutschen Gesellschaft für Allergologie und Klinische Immunologie (DGAKI) und des Ärzteverbandes Deutscher Allergologen (ÄDA). Allergo Journal 2004; 14: 48-59
  • 10 Fernández-Rivas M, González-Mancebo E, Rodríguez-Pérez R et al. Clinically relevant peach allergy is related to peach lipid transfer protein, Pru p 3, in the Spanish population. J Allergy Clin Immunol 2003; 112 (Suppl. 04) 789-795
  • 11 Petersen A, Scheurer S. Stabile pflanzliche Nahrungsmittelallergene: Lipid-Transfer-Proteine. Allergo Journal 2011; 20: 384-386
  • 12 González-Mancebo E, González-de-Olano D, Trujillo MJ et al. Prevalence of sensitization to lipid transfer proteins and profilins in a population of 430 patients in the south of Madrid. J Investig Allergol Clin Immunol 2011; 21 (Suppl. 04) 278-282
  • 13 Pastorello EA, Farioli L, Pravettoni V et al. The major allergen of peach (Prunus persica) is a lipid transfer protein. J Allergy Clin Immunol 1999; 103 (Suppl. 03) 520-526
  • 14 Zuidmeer L, van Ree R. Lipid transfer protein allergy: primary food allergy or pollen/food syndrome in some cases. Curr Opin Allergy Clin Immunol 2007; 7 (Suppl. 03) 269-273
  • 15 Ballmer-Weber BK. Hot Topic: Molekulare Diagnostik bei Nahrungsmittelallergie. Wuppertal: Allergo Update; 2012
  • 16 Asero R, Arena A, Cecchi L et al. Are IgE levels to foods other than rosaceae predictive of allergy in lipid transfer protein-hypersensitive patients?. Int Arch Allergy Immunol 2011; 155 (Suppl. 02) 149-154
  • 17 Pauli G, Oster JP, Deviller P et al. Skin testing with recombinant allergens rBet v 1 and birch profilin, rBet v 2: diagnostic value for birch pollen and associated allergies. J Allergy Clin Immunol 1996; 97 (Suppl. 05) 1100-1109
  • 18 Santos A, van Ree R. Profilins: mimickers of allergy or relevant allergens?. Int Arch Allergy Immunol 2011; 155 (Suppl. 03) 191-204
  • 19 Rodriguez-Perez R, Crespo JF, Rodríguez J et al. Profilin is a relevant melon allergen susceptible to pepsin digestion in patients with oral allergy syndrome. J Allergy Clin Immunol 2003; 111 (Suppl. 03) 634-639
  • 20 López-Torrejón G, Crespo JF, Sánchez-Monge R et al. Allergenic reactivity of the melon profilin Cuc m 2 and its identification as major allergen. Clin Exp Allergy 2005; 35 (Suppl. 08) 1065-1072
  • 21 Beyer K, Morrow E, Li XM et al. Effects of cooking methods on peanut allergenicity. J Allergy Clin Immunol 2001; 107 (Suppl. 06) 1077-1081
  • 22 Dean TP. Immunological responses in peanut allergy. Clin Exp Allergy 1998; 28 (Suppl. 01) 7-9
  • 23 Scurlock AM, Burks AW. Peanut allergenicity. Ann Allergy Asthma Immunol 2004; 93 (Suppl. 05) 12-S18
  • 24 Shreffler WG et al. Microarray immunoassay: association of clinical history, in vitro IgE function, and heterogeneity of allergenic peanut epitopes. J Allergy Clin Immunol 2004; 113 (Suppl. 04) 776-782
  • 25 Nicolaou N, Murray C, Belgrave D et al. Quantification of specific IgE to whole peanut extract and peanut components in prediction of peanut allergy. J Allergy Clin Immunol 2011; 127 (Suppl. 03) 684-685
  • 26 Astier C, Morisset M, Roitel O et al. Predictive value of skin prick tests using recombinant allergens for diagnosis of peanut allergy. J Allergy Clin Immunol 2006; 118 (Suppl. 01) 250-256
  • 27 Vereda A, van Hage M, Ahlstedt S et al. Peanut allergy: Clinical and immunologic differences among patients from 3 different geographic regions. J Allergy Clin Immunol 2011; 127 (Suppl. 03) 603-607
  • 28 Lauer I, Dueringer N, Pokoj S et al. The non-specific lipid transfer protein, Ara h 9, is an important allergen in peanut. Clin Exp Allergy 2009; 39 (Suppl. 09) 1427-1437
  • 29 Barre A, Borges JP, Rouge P. Molecular modelling of the major peanut allergen Ara h 1 and other homotrimeric allergens of the cupin superfamily: a structural basis for their IgE-binding cross-reactivity. Biochimie 2005; 87 (Suppl. 06) 499-506
  • 30 Wensing M, Knulst AC, Piersma S et al. Patients with anaphylaxis to pea can have peanut allergy caused by cross-reactive IgE to vicilin (Ara h 1). J Allergy Clin Immunol 2003; 111 (Suppl. 02) 420-424
  • 31 Dooper MM, Plassen C, Holden L et al. Immunoglobulin E cross-reactivity between lupine conglutins and peanut allergens in serum of lupine-allergic individuals. J Investig Allergol Clin Immunol 2009; 19 (Suppl. 04) 283-291
  • 32 Holzhauser T, Wackermann O, Ballmer-Weber BK et al. Soybean (Glycine max) allergy in Europe: Gly m 5 (beta-conglycinin) and Gly m 6 (glycinin) are potential diagnostic markers for severe allergic reactions to soy. J Allergy Clin Immunol 2009; 123 (Suppl. 02) 452-458
  • 33 Kosma P, Sjölander S, Landgren E et al. Severe reactions after the intake of soy drink in birch pollen-allergic children sensitized to Gly m 4. Acta Paediatr 2011; 100 (Suppl. 02) 305-306
  • 34 Nicolaou N, Custovic A. Molecular diagnosis of peanut and legume allergy. Curr Opin Allergy Clin Immunol 2011; 11 (Suppl. 03) 222-228
  • 35 Kleine-Tebbe J, Vieths S, Franke S et al. Schwere allergische Reaktionen auf Sojaeiweiß-haltiges Diätpulver durch IgE-vermittelte Kreuzreaktionen bei ausgeprägter Bet v-1 Sensibilisierung. Allergo Journal 2001; 10: 154-159
  • 36 Burney P, Summers C, Chinn S et al. Prevalence and distribution of sensitization to foods in the European Community Respiratory Health Survey: a EuroPrevall analysis. Allergy 2010; 65 (Suppl. 09) 1182-1188
  • 37 Ebo DG, Bridts CH, Verweij MM et al. Sensitization profiles in birch pollen-allergic patients with and without oral allergy syndrome to apple: lessons from multiplexed component-resolved allergy diagnosis. Clin Exp Allergy 2010; 40 (Suppl. 02) 339-347
  • 38 Ballmer-Weber BK, Hoffmann-Sommergruber K. Molecular diagnosis of fruit and vegetable allergy. Curr Opin Allergy Clin Immunol 2011; 11 (Suppl. 03) 229-235
  • 39 Bublin M, Mari A, Ebner C et al. IgE sensitization profiles toward green and gold kiwifruits differ among patients allergic to kiwifruit from 3 European countries. J Allergy Clin Immunol 2004; 114 (Suppl. 05) 1169-1175
  • 40 Rihs HP, Ruëff F, Lundberg M et al. Relevance of the recombinant lipid transfer protein of Hevea brasiliensis: IgE-binding reactivity in fruit-allergic adults. Ann Allergy Asthma Immunol 2006; 97 (Suppl. 05) 643-649
  • 41 Raulf-Heimsoth M. Latexallergene: Sensibilisierungsquellen und Einzelallergenprofile erkennen. Allergo Journal 2011; 20: 241-243
  • 42 Raulf-Heimsoth M, Stark R, Sander I et al. Anaphylactic reaction to apple juice containing acerola: cross-reactivity to latex due to prohevein. J Allergy Clin Immunol 2002; 109 (Suppl. 04) 715-716
  • 43 Ballmer-Weber BK, Vieths S, Lüttkopf D et al. Celery allergy confirmed by double-blind, placebo-controlled food challenge: a clinical study in 32 subjects with a history of adverse reactions to celery root. J Allergy Clin Immunol 2000; 106 (Suppl. 02) 373-378
  • 44 Bauermeister K, Ballmer-Weber BK, Bublin M et al. Assessment of component-resolved in vitro diagnosis of celeriac allergy. J Allergy Clin Immunol 2009; 124 (Suppl. 06) 1273-1281
  • 45 Gadermaier G, Hauser M, Egger M et al. Sensitization prevalence, antibody cross-reactivity and immunogenic peptide profile of Api g 2, the non-specific lipid transfer protein 1 of celery. PLoS One 2011; 6 (Suppl. 08) e24150
  • 46 Gadermaier G, Egger M, Girbl T et al. Molecular characterization of Api g 2, a novel allergenic member of the lipid-transfer protein 1 family from celery stalks. Mol Nutr Food Res 2011; 55 (Suppl. 04) 568-577
  • 47 Ballmer-Weber BK, Skamstrup Hansen K, Sastre J et al. Component-resolved in vitro diagnosis of carrot allergy in three different regions of Europe. Allergy 2012; 67 (Suppl. 06) 758-766
  • 48 Larramendi CH, Ferrer A, Huertas AJ et al. Sensitization to tomato peel and pulp extracts in the Mediterranean Coast of Spain: prevalence and co-sensitization with aeroallergens. Clin Exp Allergy 2008; 38 (Suppl. 01) 169-177
  • 49 Asero R, Mistrello G, Amato S. Anaphylaxis caused by tomato lipid transfer protein. Eur Ann Allergy Clin Immunol 2011; 43 (Suppl. 04) 125-126
  • 50 Bässler OY, Weiss J, Wienkoop S et al. Evidence for novel tomato seed allergens: IgE-reactive legumin and vicilin proteins identified by multidimensional protein fractionation-mass spectrometry and in silico epitope modeling. J Proteome Res 2009; 8 (Suppl. 03) 1111-1122
  • 51 Le LQ, Mahler V, Scheurer S et al. Yeast profilin complements profilin deficiency in transgenic tomato fruits and allows development of hypoallergenic tomato fruits. FASEB J 2010; 24 (Suppl. 12) 4939-4947
  • 52 Sieber R. Allergene in der Milch. Allergologie 2000; 23: 5-12
  • 53 Senti G, Leser C, Wal J-M et al. Status asthmaticus und Anaphylaxie bei einem Erwachsenen mit hochgradiger Kuhmilchallergie. In: Wüthrich B, Werfel T. Nahrungsmittel und Allergie. Band 3. München: Dustri; 2010
  • 54 Fiocchi A, Bouygue GR, Albarini M et al. Molecular diagnosis of cow’s milk allergy. Curr Opin Allergy Clin Immunol 2011; 11 (Suppl. 03) 216-221
  • 55 Ruiter B, Trégoat V, M’rabet L et al. Characterization of T cell epitopes in alphas1-casein in cow’s milk allergic, atopic and non-atopic children. Clin Exp Allergy 2006; 36 (Suppl. 03) 303-310
  • 56 Ott H, Baron JM, Heise R et al. Clinical usefulness of microarray-based IgE detection in children with suspected food allergy. Allergy 2008; 63 (Suppl. 11) 1521-1528
  • 57 Caubet JC, Kondo Y, Urisu A et al. Molecular diagnosis of egg allergy. Curr Opin Allergy Clin Immunol 2011; 11 (Suppl. 03) 210-215
  • 58 Bauermeister K, Wangorsch A, Garoffo LP et al. Generation of a comprehensive panel of crustacean allergens from the North Sea Shrimp Crangon crangon. Mol Immunol 2011; 48: 1983-1992
  • 59 Commins SP, Satinover SM, Hosen J et al. Delayed anaphylaxis, angioedema, or urticaria after consumption of red meat in patients with IgE antibodies specific for galactose-alpha-1,3-galactose. J Allergy Clin Immunol 2009; 123 (Suppl. 02) 426-433
  • 60 Chung CH, Mirakhur B, Chan E et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med 2008; 358 (Suppl. 11) 1109-1117
  • 61 Commins SP, James HR, Kelly LA et al. The relevance of tick bites to the production of IgE antibodies to the mammalian oligosaccharide galactose-alpha-1,3-galactose. J Allergy Clin Immunol 2011; 127 (Suppl. 05) 1286-1293
  • 62 Wurpts G. Chronisch rezidivierende Urtikaria bei galactose-α-1,3-galactose Allergie. Fälle, Fakten, Pharmaka. Köln: DWFA; 2011
  • 63 Brans R, Ott H, Merk HF. Wheat-dependent, exercise-induced anaphylaxis. Hautarzt 2009; 60 (Suppl. 12) 956-960