Pneumologie 2012; 66(07): 402-407
DOI: 10.1055/s-0032-1309732
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

Spiroergometrie bei Patienten mit chronisch obstruktiver Lungenerkrankung – multizentrischer Vergleich von zwei Belastungsprotokollen

Cardiopulmonary Exercise Testing (CPET) in Severe COPD – A Multicentre Comparison of Two Test Protocols
R. Ewert
1   Ernst-Moritz-Arndt-Universität Greifswald, Universitätsmedizin Greifswald, Klinik für Innere Medizin B (Direktor: Prof. Dr. med. S. B. Felix)
,
S. Gläser
1   Ernst-Moritz-Arndt-Universität Greifswald, Universitätsmedizin Greifswald, Klinik für Innere Medizin B (Direktor: Prof. Dr. med. S. B. Felix)
,
J. Winkler
2   Pneumologische Praxis Leipzig
,
H. Schrader
3   Pneumologische Praxis Burg
,
B. G.Trümper
4   Pneumologische Praxis Erfurt
,
P.-U. Haase
5   Pneumologische Praxis Halle
,
A. Obst
1   Ernst-Moritz-Arndt-Universität Greifswald, Universitätsmedizin Greifswald, Klinik für Innere Medizin B (Direktor: Prof. Dr. med. S. B. Felix)
,
G. Hoheisel
6   Pneumologische Praxis Leipzig
› Author Affiliations
Further Information

Publication History

eingereicht 17 February 2012

akzeptiert nach Revision 25 March 2012

Publication Date:
23 May 2012 (online)

Zusammenfassung

Die Spiroergometrie erlaubt bei COPD-Patienten eine valide Beurteilung der kardiopulmonalen Belastbarkeit und die Beschreibung vorliegender Limitierungen. Während die Messungen von Ventilation und Gasaustausch weitgehend standardisiert sind, existiert keine allgemeine Empfehlung bezüglich des zu wählenden Belastungsprotokolls. Wir haben daher multizentrisch zwei Belastungsprotokolle in pneumologischen Facharztpraxen verglichen. Es wurden 90 COPD-Patienten der GOLD-Stadien II − IV mittels symptomlimitierter Fahrradbelastung mit zwei unterschiedlichen Rampenprotokollen (10 Watt vs. 16 Watt/min) innerhalb von 7 Tagen untersucht. Die Ergebnisse zeigen, dass eine höhere Steigerungsrate mit einer kürzeren Belastungszeit und höheren Leistung assoziiert ist. Alle anderen spiroergometrischen Parameter der Ventilation und des Gasaustausches zeigen keine signifikanten Veränderungen beim Vergleich beider Protokolle. In pneumologischen Praxen können COPD-Patienten der GOLD-Stadien II − IV sicher und valide mittels Spiroergometrie untersucht werden. Die Anwendung eines Rampenprotokolls mit Steigerung von 16 Watt/Minute kann empfohlen werden, zumal hierfür aktuelle Normwerte vorliegen.

Abstract

Cardiopulmonary exercise testing (CPET) allows a valid evaluation of cardiopulmonary function capability and the recognition of existing limitations in COPD patients. Whereas the measurement of the different parameters of CPET and the evaluation of the results are standardised, this does not apply to the protocols chosen. The aim of this study was to evaluate whether the results of two different exercise protocols were comparable in an outpatient multicentre setting. Ninety COPD patients stages II − IV according to the Gold classification were examined by means of symptom-limited exercise testing on a bicycle with two different ramp protocols (10 Watts vs. 16 Watts/min) within seven days. The results show that a higher acceleration rate of the load was associated with shorter exercise duration and higher achieved exercise capacity. Gas exchange and ventilatory parameters did not show significant differences on comparing both protocols. In pulmonary practices COPD patients of the Gold stages II − IV can be examined safely and with validity by means of CPET. The application of a ramp protocol with a stepwise increase of 16 Watts/minute can be recommended, particularly as for this regimen standardised normal values are available.

 
  • Literatur

  • 1 Palange P, Ward SA et al ERS Task Force. Recommendations on the use of exercise testing in clinical practice. Eur Respir J 2007; 29: 185-209
  • 2 Balady GJ, Arena R, Sietsema K et al. Clinician's Guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation 2010; 122: 191-225
  • 3 Cazzola M, MacNee W, Martinez FJ et al. Outcomes for COPD pharmacological trials: from lung function to biomarkers. Eur Respir J 2008; 31: 416-469
  • 4 O'Donnell DE, Flüge T, Gerken F et al. Effects of tiotropium on lung hyperinflation, dyspnoea and exercise tolerance in COPD. Eur Respir J 2004; 23: 832-840
  • 5 O'Donnell DE, Voduc N, Fitzpatrick M et al. Effect of salmeterol on the ventilatory response to exercise in chronic obstructive pulmonary disease. Eur Respir J 2004; 24: 86-94
  • 6 Ferrazza AM, Martolini D, Valli G et al. Cardiopulmonary Exercise Testing in the Functional and Prognostic Evaluation of Patients with Pulmonary Diseases. Respiration 2009; 77: 3-17
  • 7 Oga T, Nishimura K, Tsukino M et al. Analysis of the factors related to mortality in chronic obstructive pulmonary disease: role of exercise capacity and health status. Am J Respir Crit Care Med 2003; 167: 544-549
  • 8 Hiraga T, Maekura R, Okuda Y et al. Prognostic predictors for survival in patients with COPD using cardiopulmonary exercise testing. Clin Physiol Funct Imaging 2003; 23: 324-331
  • 9 Tojo N, Ichioka M, Chida M et al. Pulmonary exercise testing predicts prognosis in patients with chronic obstructive pulmonary disease. Intern Med 2005; 44: 20-25
  • 10 Preisser AM, Ochmann U. Die Spiroergometrie in der arbeitsmedizinischen Eignungsuntersuchung und Begutachtung. Pneumologie 2011; 65: 662-670
  • 11 Revill SM, Beck KE, Morgan MD. Comparison of the peak exercise response measured by the ramp and 1-min step cycle exercise protocols in patients with exertional dyspnea. Chest 2002; 121: 1099-1105
  • 12 Benzo RP, Paramesh S, Patel SA et al. Optimal protocol selection for cardiopulmonary exercise testing in severe COPD. Chest 2007; 132: 1500-1505
  • 13 Hsia D, Casaburi R, Pradhan A et al. Physiological responses to linear treadmill and cycle ergometer exercise in COPD. Eur Respir J 2009; 34: 605-615
  • 14 Debigaré R, Maltais F, Mallet M et al. Influence of work rate incremental rate on the exercise responses in patients with COPD. Med Sci Sports Exerc 2000; 32: 1365-1368
  • 15 Miyahara N, Eda R, Takeyama H et al. Cardiorespiratory responses during cycle ergometer exercise with different ramp slope increments in patients with chronic obstructive pulmonary disease. Intern Med 2000; 39: 15-19
  • 16 Vogelmeier C, Buhl R, Criée CP et al. Leitlinie der Deutschen Atemwegsliga und der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin zur Diagnostik und Therapie von Patienten mit chronisch obstruktiver Bronchitis und Lungenemphysem (COPD). Pneumologie 2007; 61: e1-e40
  • 17 American Thoracic Society. Lung function testing: selection of reference values and interpretative strategies. Am Rev Respir Dis 1991; 144: 1202-1218
  • 18 American Thoracic Society. Standardization of Spirometry, 1994 Update. Am J Respir Crit Care Med 1995; 152: 1107-1136
  • 19 Quanjer PH, Tammeling GJ, Cotes JE et al. Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J 1993; 16: 5-40
  • 20 Koch B, Schäper C, Ittermann T et al. Reference values for cardiopulmonary exercise testing in healthy volunteers: the SHIP study. Eur Respir J 2009; 33: 389-397
  • 21 Miller WF, Scacci R, Gast LR. Laboratory Evaluation of Pulmonary Function. Philadelphia: Lippincott Williams and Wilkins; 1987
  • 22 Jones NL, Makrides L, Hitchcock C et al. Normal standards for an incremental progressive cycle ergometer test. Am Rev Respir Dis 1985; 131: 700-708
  • 23 Wasserman K, Hansen JE, Sue DY et al. Principles of Exercise Testing and Interpretation: Including Pathophysiology and Clinical Applications. 4th. Ed. Philadelphia: Lippincott Williams and Wilkins; 2004
  • 24 Brown SE, Fischer CE, Stansbury DW et al. Reproducibility of VO2max in patients with chronic air-flow obstruction. Am Rev Respir Dis 1985; 131: 435-438
  • 25 Cox NJ, Hendriks JC, Binkhorst RA et al. Reproducibility of incremental maximal cycle ergometer tests in patients with mild to moderate obstructive lung diseases. Lung 1989; 167: 129-133
  • 26 Hansen JE, Sun XG, Yasunobu Y et al. Reproducibility of cardiopulmonary exercise measurements in patients with pulmonary arterial hypertension. Chest 2004; 126: 816-824
  • 27 Midgley AW, Bentley DJ, Luttikholt H et al. Challenging a dogma of exercise physiology: does an incremental exercise test for valid VO 2 max determination really need to last between 8 and 12 minutes?. Sports Med 2008; 38: 441-447
  • 28 Kang J, Chaloupka EC, Mastrangelo MA et al. Physiological comparisons among three maximal treadmill exercise protocols in trained and untrained individuals. Eur J Appl Physiol 2001; 84: 291-295
  • 29 Myers J, Buchanan N, Walsh D et al. Comparison of the ramp versus standard exercise protocols. J Am Coll Cardiol 1991; 17: 1334-1342
  • 30 Gläser S, Lodziewski S, Koch B et al. Influence of the incremental step size in work rate on exercise response and gas exchange in patients with pulmonary hypertension. BMC Pulm Med 2008; 8: 3
  • 31 Mathur RS, Revill SM, Vara DD et al. Comparison of peak oxygen consumption during cycle and treadmill exercise in severe chronic obstructive pulmonary disease. Thorax 1995; 50: 829-833
  • 32 Christensen CC, Ryg MS, Edvardsen A et al. Effect of exercise mode on oxygen uptake and blood gases in COPD patients. Respir Med 2004; 98: 656-660
  • 33 Buchfuhrer MJ, Hansen JE, Robinson TE et al. Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol 1983; 55: 1558-1564
  • 34 Hsia D, Casaburi R, Pradhan A et al. Physiological responses to linear treadmill and cycle ergometer exercise in COPD. Eur Respir J 2009; 34: 605-615