RSS-Feed abonnieren
DOI: 10.1055/s-0032-1309023
Intraoperative Indocyaningrün-Fluoreszenzdiagnostik mittels Operationsmikroskop in der plastischen Chirurgie
Microscope-Integrated Intraoperative Indocyanine Green Angiography in Plastic SurgeryPublikationsverlauf
eingereicht 08. März 2012
akzeptiert 12. März 2012
Publikationsdatum:
11. April 2012 (online)
Zusammenfassung
Das Wissen über die Qualität der Gewebsperfusion kann eine Prognose über den Erfolg einer Lappenplastik liefern und das intraoperative Erkennen von Durchblutungsstörungen bietet die Möglichkeit einer sofortigen chirurgischen Intervention. Die intraoperative Perfusionskontrolle mittels Indocyaningrün (ICG)-Fluoreszenzangiografie ermöglicht eine genaue topografische Analyse der Perfusion und bietet darüber hinaus die Möglichkeit der Untersuchung der Lymphabflusswege zur Sentinel-Markierung und ermöglicht eine Aussage zur Tiefenausdehnung von Verbrennungsverletzungen. Der Integration der Technik in das Operationsmikroskop ermöglicht zusätzlich die Visualisierung des Blutflusses über Mikroanastomosen und die Messung der zeitlichen Latenz zwischen arteriellem Ein- und venösem Ausstrom. Im Beobachtungszeitraum wurden 11 freie Lappenplastiken (3 M. latissimusdors, 3 M. rectus abdominis-, 1M. gracilis, 2 A. radialis-,1 ALT, 1 DIEP-Lappenplastik) untersucht. Die topografischen Analyse erfolgte im Anschluss an die Messung der Mikroanastomosen. Keine der untersuchten Lappenplastiken zeigte im postoperativen Verlauf Zeichen einer Lappennekrose. Die zeitliche Latenz zwischen arteriellem Ein- und venösen Ausstrom betrug im Schnitt 32,8 s. Hierbei zeigten sich deutliche Unterschiede zwischen reinen Muskel-Lappenplastiken (27,7 s), und faszio-kutanen Lappenplastiken (47,5 s). Bei einer der untersuchten Lappenplastiken stellte sich bei klinisch nicht eindeutigem Patency-Test der venösen Anastomose eine ICG-fluoreszenzangiografisch eindeutige Thrombose dar, die umgehend revidiert werden konnte. Die Methode der ICG-Fluoreszenzangiografie stellt insbesondere im intraoperativen Einsatz ein überaus nützliches, leicht zu handhabendes und sicheres Verfahren dar. Durch die Integration in ein Operationsmikroskop entsteht die Möglichkeit eines quantifizierbaren „fluoreszenzangiografischen Patency-Tests“. Die Analyse der Passagezeit ermöglicht eine neue Möglichkeit der Beurteilung der Durchblutungssituation innerhalb der Lappenplastik. Insbesondere bei der Planung von Perforans-Lappenplastiken ermöglicht die Technik durch das schnelle Erkennen von Perfusionsgrenzen eine hervorragende Planungssicherheit.
Abstract
The knowledge of tissue perfusion has not only a prognostic value in microvascular surgery but also the intraoperative detection of malperfusion can lead to a quick surgical intervention. Indocyanine green (ICG) angiography allows a topographic analysis of perfusion and is used to assess lymphatic drainage pathways and to analyse the depth of burn injuries. Integrating the technique into an operating microscope enables visualisation of the flow over microanastomoses and allows the assessment of the transit time of blood flow between arterial and venous anastomosis. Using this method we analysed 11 microsurgical free flaps (3 latissimus dorsi, 3 rectus abdominis, 1 gracilis muscle, 2 radial forearm, 1 ALT, and 1 DIEP flap). The topographic analysis was performed after the assessment of the microanastomoses. We observed no flap loss or partial flap necrosis. The transit time between arterial inflow and venous outflow was 32.8 s on average. Here we observed distinct differences between muscle flaps (27.7 s) on the one hand and fasciocutaneous and perforator flaps (47.5 s) on the other hand. We detected one venous thrombosis by ICG angiography in a case where the clinical patency test was not distinct. Revision was performed immediately. Particularly for intraoperative assessment, ICG angiography is a useful, reliable and safe technique. The integration into the operating microscope allows an “angiographic patency test” and the analysis of the transit time allows the evaluation of blood flow within the flap. Especially when planning perforator flaps the method of ICG angiography provides a new level of safety in flap design by quickly demonstrating the borders of perfusion.
-
Literatur
- 1 Giunta RE, Holzbach T, Taskov C et al. Prediction of flap necrosis with laser induced indocyanine green fluorescence in a rat model. British journal of plastic surgery 2005; 58: 695-701
- 2 Jones BM. Monitors for the cutaneous microcirculation. Plastic and reconstructive surgery 1984; 73: 843-850
- 3 Khouri RK, Shaw WW. Monitoring of free flaps with surface-temperature recordings: is it reliable? Plastic and reconstructive surgery. 1992; 89: 495-499; discussion 500–492
- 4 Strauss JM, Neukam FW, Krohn S et al. Postoperative monitoring of microvascular flap repair with pulse oximetry – initial experience. Handchir Mikrochir Plast Chir 1994; 26: 80-83
- 5 Rojdmark J, Heden P, Ungerstedt U. Prediction of border necrosis in skin flaps of pigs with microdialysis. Journal of reconstructive microsurgery 2000; 16: 129-134
- 6 Heden P, Jurell G, Arnander C. Prediction of skin flap necrosis: a comparative study between laser Doppler flowmetry and fluorescein test in a rat model. Annals of plastic surgery 1986; 17: 485-488
- 7 Svensson H, Holmberg J, Svedman P. Interpreting laser Doppler recordings from free flaps. Scandinavian journal of plastic and reconstructive surgery and hand surgery/Nordisk plastikkirurgisk forening [and] Nordisk klubb for handkirurgi 1993; 27: 81-87
- 8 Hirigoyen MB, Blackwell KE, Zhang WX et al. Continuous tissue oxygen tension measurement as a monitor of free-flap viability. Plastic and reconstructive surgery 1997; 99: 763-773
- 9 Kamolz LP, Giovanoli P, Haslik W et al. Continuous free-flap monitoring with tissue-oxygen measurements: three-year experience. Journal of reconstructive microsurgery. 2002; 18: 487-491; discussion 492–483
- 10 Rozen WM, Enajat M, Whitaker IS et al. Postoperative monitoring of lower limb free flaps with the Cook-Swartz implantable Doppler probe: A clinical trial. Microsurgery 2010; 30: 354-360
- 11 Rozen WM, Whitaker IS, Wagstaff MJ et al. Buried free flaps for breast reconstruction: a new technique using the Cook-Swartz implantable Doppler probe for postoperative monitoring. Plastic and reconstructive surgery 2010; 125: 171e-172e
- 12 Jung EM, Prantl L, Schreyer AG et al. New perfusion imaging of tissue transplants with Contrast Harmonic Ultrasound Imaging (CHI) and Magnetic Resonance Imaging (MRI) in comparison with laser-induced Indocyanine Green (ICG) fluorescence angiography. Clinical hemorheology and microcirculation 2009; 43: 19-33
- 13 Holm C, Mayr M, Hofter E et al. Intraoperative evaluation of skin-flap viability using laser-induced fluorescence of indocyanine green. British journal of plastic surgery 2002; 55: 635-644
- 14 Holzbach T, Mueller DF, Unbehaun N et al. TRAM-flap perfusion across a midline scar 22 years after a lower median laparotomy. J Plast Reconstr Aesthet Surg 2008; 61: 992-993
- 15 Holzbach T, Taskov C, Henke J et al. Evaluation of perfusion in skin flaps by laser-induced indocyanine green fluorescence. Handchir Mikrochir Plast Chir 2005; 37: 396-402
- 16 Pang CY, Neligan P, Nakatsuka T et al. Assessment of the fluorescein dye test for prediction of skin flap viability in pigs. The Journal of surgical research 1986; 41: 173-181
- 17 Silverman DG, LaRossa DD, Barlow CH et al. Quantification of tissue fluorescein delivery and prediction of flap viability with the fiberoptic dermofluorometer. Plastic and reconstructive surgery 1980; 66: 545-553
- 18 Singer R, Lewis CM, Franklin JD et al. Fluorescein test for prediction of flap viability during breast reconstructions. Plastic and reconstructive surgery 1978; 61: 371-375
- 19 Liu DZ, Mathes DW, Zenn MR et al. The application of indocyanine green fluorescence angiography in plastic surgery. Journal of reconstructive microsurgery 2011; 27: 355-364
- 20 Holm C, Mayr M, Hofter E et al. Perfusion zones of the DIEP flap revisited: a clinical study. Plastic and reconstructive surgery 2006; 117: 37-43
- 21 Martirosyan NL, Cavalcanti DD, Eschbacher JM et al. Use of in vivo near-infrared laser confocal endomicroscopy with indocyanine green to detect the boundary of infiltrative tumor. Journal of neurosurgery 2011; 115: 1131-1138
- 22 Takagi Y, Kikuta K, Nozaki K et al. Detection of a residual nidus by surgical microscope-integrated intraoperative near-infrared indocyanine green videoangiography in a child with a cerebral arteriovenous malformation. Journal of neurosurgery 2007; 107: 416-418
- 23 Park KH, Hwang JM, Kim JH et al. Intraoperative extraocular Indocyanine Green (IE-ICG) dye test: a new method of detecting a peeled internal limiting membrane. The British journal of ophthalmology 2008; 92: 369-372
- 24 Holm C, Dornseifer U, Sturtz G et al. The intrinsic transit time of free microvascular flaps: clinical and prognostic implications. Microsurgery 2010; 30: 91-96
- 25 Aoyama K, Kamio T, Ohchi T et al. Sentinel lymph node biopsy for breast cancer patients using fluorescence navigation with indocyanine green. World journal of surgical oncology 2011; 9: 157
- 26 Kamolz LP, Andel H, Haslik W et al. Indocyanine green video angiographies help to identify burns requiring operation. Burns 2003; 29: 785-791