Semin Liver Dis 2012; 32(01): 030-038
DOI: 10.1055/s-0032-1306424
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Nonalcoholic Steatohepatitis and Noncirrhotic Hepatocellular Carcinoma: Fertile Soil

Dawn M. Torres
1   Division of Gastroenterology, Department of Medicine, Walter Reed National Military Medical Center, Washington, D.C.
,
Stephen A. Harrison
2   San Antonio Military Medical Center, Fort Sam Houston, Texas.
› Author Affiliations
Further Information

Publication History

Publication Date:
13 March 2012 (online)

Abstract

Nonalcoholic fatty liver disease (NAFLD) is easily the most common cause of chronic liver disease in the United States (U.S.) as the hepatic manifestation of the metabolic syndrome. Although only 5 to 20% of patients with NAFLD are generally considered to meet criteria for nonalcoholic steatohepatitis (NASH), with its inherent risk for progression to cirrhosis, this still represents an alarmingly large number of individuals. The exponentially growing rates of hepatocellular carcinoma (HCC) in the U.S. may be partially attributable to increased numbers of NASH cirrhotics, although recent evidence has suggested that NAFLD may directly promote hepatic carcinogenesis independent of cirrhosis. This review focuses on HCC in noncirrhotic NASH with an emphasis on clinical presentation, pathogenesis, and implications for screening.

 
  • References

  • 1 Williams CD, Stengel J, Asike MI , et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 2011; 140 (1) 124-131
  • 2 Bruix J, Sherman M ; Practice Guidelines Committee, American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma. Hepatology 2005; 42 (5) 1208-1236
  • 3 Blonski W, Kotlyar DS, Forde KA. Non-viral causes of hepatocellular carcinoma. World J Gastroenterol 2010; 16 (29) 3603-3615
  • 4 Clark JM. The epidemiology of nonalcoholic fatty liver disease in adults. J Clin Gastroenterol 2006; 40 (Suppl 1) S5-S10
  • 5 Bosch FX, Ribes J, Diaz M, Cléries R. Primary liver cancer: world-wide incidence and trends. Gastroenterology 2004; 127: S3-S16
  • 6 El-Serag HB, Mason AC. Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med 1999; 340 (10) 745-750
  • 7 Gomaa AI, Khan SA, Toledano MB, Waked I, Taylor-Robinson SD. Hepatocellular carcinoma: epidemiology, risk factors and pathogenesis. World J Gastroenterol 2008; 14 (27) 4300-4308
  • 8 Ascha MS, Hanouneh IA, Lopez R, Tamimi TA, Feldstein AF, Zein NN. The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology 2010; 51 (6) 1972-1978
  • 9 O'Leary JG, Landaverde C, Jennings L, Goldstein RM, Davis GL. Patients with NASH and cryptogenic cirrhosis are less likely than those with hepatitis C to receive liver transplants. Clin Gastroenterol Hepatol 2011; 9 (8) 700-704 , e1
  • 10 Lok AS, Seeff LB, Morgan TR , et al; HALT-C Trial Group. Incidence of hepatocellular carcinoma and associated risk factors in hepatitis C-related advanced liver disease. Gastroenterology 2009; 136 (1) 138-148
  • 11 Starley BQ, Calcagno CJ, Harrison SA. Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection. Hepatology 2010; 51 (5) 1820-1832
  • 12 Kawada N, Imanaka K, Kawaguchi T , et al. Hepatocellular carcinoma arising from non-cirrhotic nonalcoholic steatohepatitis. J Gastroenterol 2009; 44 (12) 1190-1194
  • 13 Hashimoto E, Yatsuji S, Tobari M , et al. Hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. J Gastroenterol 2009; 44 (Suppl 19) 89-95
  • 14 Chagas AL, Kikuchi LO, Oliveira CP , et al. Does hepatocellular carcinoma in non-alcoholic steatohepatitis exist in cirrhotic and non-cirrhotic patients?. Braz J Med Biol Res 2009; 42 (10) 958-962
  • 15 Ertle J, Dechêne A, Sowa JP , et al. Non-alcoholic fatty liver disease progresses to hepatocellular carcinoma in the absence of apparent cirrhosis. Int J Cancer 2011; 128 (10) 2436-2443
  • 16 Paradis V, Zalinski S, Chelbi E , et al. Hepatocellular carcinomas in patients with metabolic syndrome often develop without significant liver fibrosis: a pathological analysis. Hepatology 2009; 49 (3) 851-859
  • 17 Yasui K, Hashimoto E, Komorizono Y , et al; Japan NASH Study Group, Ministry of Health, Labour, and Welfare of Japan. Characteristics of patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma. Clin Gastroenterol Hepatol 2011; 9 (5) 428-433 , quiz e50
  • 18 Takuma Y, Nouso K. Nonalcoholic steatohepatitis-associated hepatocellular carcinoma: our case series and literature review. World J Gastroenterol 2010; 16 (12) 1436-1441
  • 19 Caldwell SH, Crespo DM, Kang HS, Al-Osaimi AM. Obesity and hepatocellular carcinoma. Gastroenterology 2004; 127 (5, Suppl 1) S97-S103
  • 20 Wolk A, Gridley G, Svensson M , et al. A prospective study of obesity and cancer risk (Sweden). Cancer Causes Control 2001; 12 (1) 13-21
  • 21 Nair S, Mason A, Eason J, Loss G, Perrillo RP. Is obesity an independent risk factor for hepatocellular carcinoma in cirrhosis?. Hepatology 2002; 36 (1) 150-155
  • 22 Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 2003; 348 (17) 1625-1638
  • 23 Møller H, Mellemgaard A, Lindvig K, Olsen JH. Obesity and cancer risk: a Danish record-linkage study. Eur J Cancer 1994; 30A (3) 344-350
  • 24 Oh SW, Yoon YS, Shin SA. Effects of excess weight on cancer incidences depending on cancer sites and histologic findings among men: Korea National Health Insurance Corporation Study. J Clin Oncol 2005; 23 (21) 4742-4754
  • 25 Chen CL, Yang HI, Yang WS , et al. Metabolic factors and risk of hepatocellular carcinoma by chronic hepatitis B/C infection: a follow-up study in Taiwan. Gastroenterology 2008; 135 (1) 111-121
  • 26 Adami HO, Chow WH, Nyrén O , et al. Excess risk of primary liver cancer in patients with diabetes mellitus. J Natl Cancer Inst 1996; 88 (20) 1472-1477
  • 27 Wideroff L, Gridley G, Mellemkjaer L , et al. Cancer incidence in a population-based cohort of patients hospitalized with diabetes mellitus in Denmark. J Natl Cancer Inst 1997; 89 (18) 1360-1365
  • 28 Lagiou P, Kuper H, Stuver SO, Tzonou A, Trichopoulos D, Adami HO. Role of diabetes mellitus in the etiology of hepatocellular carcinoma. J Natl Cancer Inst 2000; 92 (13) 1096-1099
  • 29 El-Serag HB, Hampel H, Javadi F. The association between diabetes and hepatocellular carcinoma: a systematic review of epidemiologic evidence. Clin Gastroenterol Hepatol 2006; 4 (3) 369-380
  • 30 El-Serag HB, Tran T, Everhart JE. Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology 2004; 126 (2) 460-468
  • 31 Ascha MS, Hanouneh IA, Lopez R, Tamimi TA, Feldstein AF, Zein NN. The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology 2010; 51 (6) 1972-1978
  • 32 George DK, Goldwurm S, MacDonald GA , et al. Increased hepatic iron concentration in nonalcoholic steatohepatitis is associated with increased fibrosis. Gastroenterology 1998; 114 (2) 311-318
  • 33 Sorrentino P, D'Angelo S, Ferbo U, Micheli P, Bracigliano A, Vecchione R. Liver iron excess in patients with hepatocellular carcinoma developed on non-alcoholic steato-hepatitis. J Hepatol 2009; 50 (2) 351-357
  • 34 Mendler MH, Turlin B, Moirand R , et al. Insulin resistance-associated hepatic iron overload. Gastroenterology 1999; 117 (5) 1155-1163
  • 35 Fujita N, Miyachi H, Tanaka H , et al. Iron overload is associated with hepatic oxidative damage to DNA in nonalcoholic steatohepatitis. Cancer Epidemiol Biomarkers Prev 2009; 18 (2) 424-432
  • 36 Mínguez B, Tovar V, Chiang D, Villanueva A, Llovet JM. Pathogenesis of hepatocellular carcinoma and molecular therapies. Curr Opin Gastroenterol 2009; 25 (3) 186-194
  • 37 Villanueva A, Newell P, Chiang DY, Friedman SL, Llovet JM. Genomics and signaling pathways in hepatocellular carcinoma. Semin Liver Dis 2007; 27 (1) 55-76
  • 38 Llovet JM, Bruix J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology 2008; 48 (4) 1312-1327
  • 39 Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116 (2) 281-297
  • 40 Dara L, Ji C, Kaplowitz N. The contribution of endoplasmic reticulum stress to liver diseases. Hepatology 2011; 53 (5) 1752-1763
  • 41 Amir M, Czaja MJ. Autophagy in nonalcoholic steatohepatitis. Expert Rev Gastroenterol Hepatol 2011; 5 (2) 159-166
  • 42 Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 2010; 52 (5) 1836-1846
  • 43 Hashimoto E, Tokushige K. Hepatocellular carcinoma in non-alcoholic steatohepatitis: Growing evidence of an epidemic?. Hepatol Res 2012; 42 (1) 1-14
  • 44 Wang Y, Ausman LM, Greenberg AS, Russell RM, Wang XD. Nonalcoholic steatohepatitis induced by a high-fat diet promotes diethylnitrosamine-initiated early hepatocarcinogenesis in rats. Int J Cancer 2009; 124 (3) 540-546
  • 45 Park EJ, Lee JH, Yu GY , et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 2010; 140 (2) 197-208
  • 46 Roderburg C, Trautwein C. Obesity and liver cancer: a key role for interleukin-6 and signal transducer and activator of transcription 3?. Hepatology 2010; 51 (5) 1850-1852
  • 47 Bettermann K, Vucur M, Haybaeck J , et al. TAK1 suppresses a NEMO-dependent but NF-kappaB-independent pathway to liver cancer. Cancer Cell 2010; 17 (5) 481-496
  • 48 Sun B, Karin M. Obesity, inflammation, and liver cancer. J Hepatol 2011; ; In press
  • 49 Bougoulia M, Triantos A, Koliakos G. Effect of weight loss with or without orlistat treatment on adipocytokines, inflammation, and oxidative markers in obese women. Hormones (Athens) 2006; 5 (4) 259-269
  • 50 Gannagé-Yared MH, Khalife S, Semaan M, Fares F, Jambart S, Halaby G. Serum adiponectin and leptin levels in relation to the metabolic syndrome, androgenic profile and somatotropic axis in healthy non-diabetic elderly men. Eur J Endocrinol 2006; 155 (1) 167-176
  • 51 Asano T, Watanabe K, Kubota N , et al. Adiponectin knockout mice on high fat diet develop fibrosing steatohepatitis. J Gastroenterol Hepatol 2009; 24 (10) 1669-1676
  • 52 Kamada Y, Matsumoto H, Tamura S , et al. Hypoadiponectinemia accelerates hepatic tumor formation in a nonalcoholic steatohepatitis mouse model. J Hepatol 2007; 47 (4) 556-564
  • 53 Bråkenhielm E, Veitonmäki N, Cao R , et al. Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc Natl Acad Sci U S A 2004; 101 (8) 2476-2481
  • 54 Tsochatzis EA, Papatheodoridis GV, Archimandritis AJ. Adipokines in nonalcoholic steatohepatitis: from pathogenesis to implications in diagnosis and therapy. Mediators Inflamm 2009; 2009: 831670
  • 55 Ikejima K, Honda H, Yoshikawa M , et al. Leptin augments inflammatory and profibrogenic responses in the murine liver induced by hepatotoxic chemicals. Hepatology 2001; 34 (2) 288-297
  • 56 Marra F. Leptin and liver fibrosis: a matter of fat. Gastroenterology 2002; 122: 1399-1410
  • 57 Ish-Shalom D, Christoffersen CT, Vorwerk P , et al. Mitogenic properties of insulin and insulin analogues mediated by the insulin receptor. Diabetologia 1997; 40 (Suppl 2) S25-S31
  • 58 Buzzelli G, Dattolo P, Pinzani M, Brocchi A, Romano S, Gentilini P. Circulating growth hormone and insulin-like growth factor-I in nonalcoholic liver cirrhosis with or without superimposed hepatocarcinoma: evidence of an altered circadian rhythm. Am J Gastroenterol 1993; 88 (10) 1744-1748
  • 59 Price JA, Kovach SJ, Johnson T , et al. Insulin-like growth factor I is a comitogen for hepatocyte growth factor in a rat model of hepatocellular carcinoma. Hepatology 2002; 36 (5) 1089-1097
  • 60 Tanaka S, Mohr L, Schmidt EV, Sugimachi K, Wands JR. Biological effects of human insulin receptor substrate-1 overexpression in hepatocytes. Hepatology 1997; 26 (3) 598-604
  • 61 Aleem E, Nehrbass D, Klimek F, Mayer D, Bannasch P. Upregulation of the insulin receptor and type I insulin-like growth factor receptor are early events in hepatocarcinogenesis. Toxicol Pathol 2011; 39 (3) 524-543
  • 62 Longato L, de la Monte S, Kuzushita N , et al. Overexpression of insulin receptor substrate-1 and hepatitis Bx genes causes premalignant alterations in the liver. Hepatology 2009; 49 (6) 1935-1943
  • 63 Longato L, de la Monte S, Califano S, Wands JR. Synergistic premalignant effects of chronic ethanol exposure and insulin receptor substrate-1 overexpression in liver. Hepatol Res 2008; 38 (9) 940-953
  • 64 Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell 2002; 109 (Suppl) S81-S96
  • 65 Luedde T, Schwabe RF. NF-κB in the liver—linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2011; 8 (2) 108-118
  • 66 Chiang SH, Bazuine M, Lumeng CN , et al. The protein kinase IKKepsilon regulates energy balance in obese mice. Cell 2009; 138 (5) 961-975
  • 67 Sass G, Klinger N, Sirma H , et al. Inhibition of experimental HCC growth in mice by use of the kinase inhibitor DMAT. Int J Oncol 2011; 39 (2) 433-442
  • 68 Wree A, Kahraman A, Gerken G, Canbay A. Obesity affects the liver - the link between adipocytes and hepatocytes. Digestion 2011; 83 (1-2) 124-133
  • 69 Feldstein AE, Canbay A, Angulo P , et al. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology 2003; 125 (2) 437-443
  • 70 Cho H, Black SC, Looper D , et al. Pharmacological characterization of a small molecule inhibitor of c-Jun kinase. Am J Physiol Endocrinol Metab 2008; 295 (5) E1142-E1151
  • 71 Solinas G, Karin M. JNK1 and IKKbeta: molecular links between obesity and metabolic dysfunction. FASEB J 2010; 24 (8) 2596-2611
  • 72 Ferreira DM, Castro RE, Machado MV , et al. Apoptosis and insulin resistance in liver and peripheral tissues of morbidly obese patients is associated with different stages of non-alcoholic fatty liver disease. Diabetologia 2011; 54 (7) 1788-1798
  • 73 Singh R, Wang Y, Xiang Y, Tanaka KE, Gaarde WA, Czaja MJ. Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance. Hepatology 2009; 49 (1) 87-96
  • 74 Schattenberg JM, Singh R, Wang Y , et al. JNK1 but not JNK2 promotes the development of steatohepatitis in mice. Hepatology 2006; 43 (1) 163-172
  • 75 Aghazadeh S, Yazdanparast R. Inhibition of JNK along with activation of ERK1/2 MAPK pathways improve steatohepatitis among the rats. Clin Nutr 2010; 29 (3) 381-385
  • 76 Maeda S. NF-κB, JNK, and TLR signaling pathways in hepatocarcinogenesis. Gastroenterol Res Pract 2010; 2010: 367694
  • 77 Chang Q, Zhang Y, Beezhold KJ , et al. Sustained JNK1 activation is associated with altered histone H3 methylations in human liver cancer. J Hepatol 2009; 50 (2) 323-333
  • 78 Tarn C, Lee S, Hu Y, Ashendel C, Andrisani OM. Hepatitis B virus X protein differentially activates RAS-RAF-MAPK and JNK pathways in X-transforming versus non-transforming AML12 hepatocytes. J Biol Chem 2001; 276 (37) 34671-34680
  • 79 Sakurai T, Maeda S, Chang L, Karin M. Loss of hepatic NF-kappa B activity enhances chemical hepatocarcinogenesis through sustained c-Jun N-terminal kinase 1 activation. Proc Natl Acad Sci U S A 2006; 103 (28) 10544-10551
  • 80 Eferl R, Ricci R, Kenner L , et al. Liver tumor development. c-Jun antagonizes the proapoptotic activity of p53. Cell 2003; 112 (2) 181-192
  • 81 He G, Yu GY, Temkin V , et al. Hepatocyte IKKbeta/NF-kappaB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell 2010; 17 (3) 286-297
  • 82 Wu WY, Li J, Wu ZS, Zhang CL, Meng XL. STAT3 activation in monocytes accelerates liver cancer progression. BMC Cancer 2011; 11: 506
  • 83 Gu FM, Li QL, Gao Q , et al. IL-17 induces AKT-dependent IL-6/JAK2/STAT3 activation and tumor progression in hepatocellular carcinoma. Mol Cancer 2011; 10 (1) 150
  • 84 Gu FM, Li QL, Gao Q , et al. Sorafenib inhibits growth and metastasis of hepatocellular carcinoma by blocking STAT3. World J Gastroenterol 2011; 17 (34) 3922-3932
  • 85 Mueller KM, Kornfeld JW, Friedbichler K , et al. Impairment of hepatic growth hormone and glucocorticoid receptor signaling causes steatosis and hepatocellular carcinoma in mice. Hepatology 2011; 54 (4) 1398-1409
  • 86 Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 2007; 8 (10) 774-785
  • 87 Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003; 115 (5) 577-590
  • 88 Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci 2009; 122 (Pt 20) 3589-3594
  • 89 Lee JW, Park S, Takahashi Y, Wang HG. The association of AMPK with ULK1 regulates autophagy. PLoS ONE 2010; 5 (11) e15394
  • 90 Sokollik C, Ang M, Jones N. Autophagy: a primer for the gastroenterologist/hepatologist. Can J Gastroenterol 2011; 25 (12) 667-674
  • 91 Singh R, Kaushik S, Wang Y , et al. Autophagy regulates lipid metabolism. Nature 2009; 458 (7242) 1131-1135
  • 92 Dikic I, Johansen T, Kirkin V. Selective autophagy in cancer development and therapy. Cancer Res 2010; 70 (9) 3431-3434
  • 93 Egan DF, Shackelford DB, Mihaylova MM , et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011; 331 (6016) 456-461
  • 94 Chan EY. mTORC1 phosphorylates the ULK1-mAtg13–FIP200 autophagy regulatory complex. Sci Signal 2009; 2: 51
  • 95 Takamura A, Komatsu M, Hara T , et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev 2011; 25 (8) 795-800
  • 96 Qu X, Yu J, Bhagat G , et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003; 112 (12) 1809-1820
  • 97 Ding ZB, Shi YH, Zhou J , et al. Association of autophagy defect with a malignant phenotype and poor prognosis of hepatocellular carcinoma. Cancer Res 2008; 68 (22) 9167-9175
  • 98 Takeuchi O, Akira S. Toll-like receptors; their physiological role and signal transduction system. Int Immunopharmacol 2001; 1 (4) 625-635
  • 99 Seki E, Brenner DA. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology 2008; 48 (1) 322-335
  • 100 Rivera CA, Adegboyega P, van Rooijen N, Tagalicud A, Allman M, Wallace M. Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol 2007; 47 (4) 571-579
  • 101 Honkakoski P, Zelko I, Sueyoshi T, Negishi M. The nuclear orphan receptor CAR-retinoid X receptor heterodimer activates the phenobarbital-responsive enhancer module of the CYP2B gene. Mol Cell Biol 1998; 18 (10) 5652-5658
  • 102 Moreau A, Vilarem MJ, Maurel P, Pascussi JM. Xenoreceptors CAR and PXR activation and consequences on lipid metabolism, glucose homeostasis, and inflammatory response. Mol Pharm 2008; 5 (1) 35-41
  • 103 Huang W, Zhang J, Washington M , et al. Xenobiotic stress induces hepatomegaly and liver tumors via the nuclear receptor constitutive androstane receptor. Mol Endocrinol 2005; 19 (6) 1646-1653
  • 104 Takizawa D, Kakizaki S, Horiguchi N, Yamazaki Y, Tojima H, Mori M. Constitutive active/androstane receptor promotes hepatocarcinogenesis in a mouse model of non-alcoholic steatohepatitis. Carcinogenesis 2011; 32 (4) 576-583
  • 105 Peyrou M, Bourgoin L, Foti M. PTEN in non-alcoholic fatty liver disease/non-alcoholic steatohepatitis and cancer. Dig Dis 2010; 28 (1) 236-246
  • 106 Anezaki Y, Ohshima S, Ishii H , et al. Sex difference in the liver of hepatocyte-specific Pten-deficient mice: A model of nonalcoholic steatohepatitis. Hepatol Res 2009; 39 (6) 609-618
  • 107 Sze KM, Wong KL, Chu GK, Lee JM, Yau TO, Oi-Lin Ng I. Loss of phosphatase and tensin homolog enhances cell invasion and migration through AKT/Sp-1 transcription factor/matrix metalloproteinase 2 activation in hepatocellular carcinoma and has clinicopathologic significance. Hepatology 2011; 53 (5) 1558-1569
  • 108 Mínguez B, Tovar V, Chiang D, Villanueva A, Llovet JM. Pathogenesis of hepatocellular carcinoma and molecular therapies. Curr Opin Gastroenterol 2009; 25 (3) 186-194
  • 109 Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007; 133 (2) 647-658
  • 110 Wang B, Majumder S, Nuovo G , et al. Role of microRNA-155 at early stages of hepatocarcinogenesis induced by choline-deficient and amino acid-defined diet in C57BL/6 mice. Hepatology 2009; 50 (4) 1152-1161