RSS-Feed abonnieren
DOI: 10.1055/s-0032-1304843
Hepatozelluläres Karzinom – molekulare Grundlagen und Zielmoleküle für die Therapie
Hepatocellular carcinoma – molecular pathogenesis and novel targets for therapyPublikationsverlauf
23. Mai 2011
26. Januar 2012
Publikationsdatum:
11. April 2012 (online)
Zusammenfassung
Das hepatozelluläre Karzinom zählt zu den häufigsten Krebserkrankungen weltweit mit einer steigenden Inzidenz in westlichen Ländern. Leberzellkarzinome zeichnen sich durch eine molekulare Vielfalt und ein schlechtes Therapieansprechen aus. Trotz großer Fortschritte in der Diagnostik und Behandlung des Leberzellkarzinoms in den letzten Jahren bleiben die Details der biochemischen Mechanismen weitestgehend unverstanden. Hierdurch wird die Entwicklung neuer Therapiestrategien erheblich erschwert. Die rasante Entwicklung von neuen Verfahren zur Analyse molekularer Mechanismen der Krebsentstehung auf verschiedenen molekularen Ebenen hat wesentlich zum Verständnis der Hepatokarzinogenese beigetragen. So ermöglichen neue Technologien die gleichzeitige Untersuchung tausender molekularer Ziele. Obwohl die Anwendung dieser Ansätze in der klinischen Routine noch begrenzt ist, eröffnen „Next-Generation-Technologien“ bislang ungeahnte Einblicke in die molekularen Veränderungen der Hepatokarzinogenese. Der Einsatz dieser neuen Verfahren birgt ein großes Potenzial, die Diagnostik des hepatozellulären Karzinoms zu verbessern, und neue Ziele für individualisierte Therapien zu identifizieren.
Abstract
Hepatocellular carcinomas rank among the most common cancers worldwide. They are characterized by phenotypic heterogeneity and poor response to treatment modalities. Although considerable progress in diagnosis and management of hepatocellular carcinomas has been made over the last decade, the exact biology of liver cancer remains poorly understood, overall hindering the development of new therapeutic strategies. The development of whole-genome analyses on different molecular levels greatly advanced our understanding of hepatocarcinogenesis by simultaneously investigating thousands of molecular targets. Although implementation of the results from these analyses in routine clinical practice is still limited, these next generation technologies offer unprecedented insights into the molecular mechanisms of the development of liver cancer. Overall, great promise rests on whole genomic approaches to improve the diagnostic testing and to identify novel targets for individualized treatment modalities in liver cancer.
-
Literatur
- 1 Andersen JB, Factor VM, Marquardt JU et al. An integrated genomic and epigenomic approach predicts therapeutic response to zebularine in human liver cancer. Sci Transl Med 2010; 2: 54ra77
- 2 Calvisi DF, Ladu S, Gorden A et al. Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest 2007; 117: 2713-2722
- 3 Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 2006; 6: 674-687
- 4 Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer 2004; 4: 143-153
- 5 Hoshida Y, Villanueva A, Kobayashi M et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med 2008; 359: 1995-2004
- 6 Krawczyk M, Mullenbach R, Weber SN et al. Genome-wide association studies and genetic risk assessment of liver diseases. Nat Rev Gastroenterol Hepatol 2010; 7: 669-681
- 7 Lee JS, Thorgeirsson SS. Genetic profiling of human hepatocellular carcinoma. Sem in Liver Dis 2005; 25: 125-132
- 8 Marquardt JU, Galle PR, Teufel A. Molecular diagnosis and therapy of hepatocellular carcinoma (HCC); An emerging field for advanced technologies. J Hepatol 2012; 56: 267–277
- 9 McDermott U, Downing JR, Stratton MR. Genomics and the continuum of cancer care. N Engl J Med 2010; 364: 340-350
- 10 Meyerson M, Gabriel S, Getz G. Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 2011; 11: 685-696
- 11 Mott JL. MicroRNAs involved in tumor suppressor and oncogene pathways: implications for hepatobiliary neoplasia. Hepatology 2009; 50: 630-637
- 12 Paradis V, Zalinski S, Chelbi E et al. Hepatocellular carcinomas in patients with metabolic syndrome often develop without significant liver fibrosis: a pathological analysis. Hepatology 2009; 49: 851-859
- 13 Sherman M. Hepatocellular carcinoma: epidemiology, surveillance, and diagnosis. Semin Liver Dis 2010; 30: 3-16
- 14 Thorgeirsson SS. Genomic decoding of hepatocellular carcinoma. Gastroenterology 2006; 131: 1344-1346
- 15 Um TH, Kim H, Oh BK et al. Aberrant CpG island hypermethylation in dysplastic nodules and early HCC of hepatitis B virus-related human multistep hepatocarcinogenesis. J Hepatol 2011; 54: 939-947
- 16 Villanueva A, Hoshida Y, Battiston C et al. Combining clinical, pathology, and gene expression data to predict recurrence of hepatocellular carcinoma. Gastroenterology 2011; 140: 1501-1512.e2
- 17 Villanueva A, Newell P, Chiang DY et al. Genomics and signaling pathways in hepatocellular carcinoma. Sem in Liver Dis 2007; 27: 55-76
- 18 Woo HG, Park ES, Lee JS et al. Identification of potential driver genes in human liver carcinoma by genomewide screening. Cancer Res 2009; 69: 4059-4066
- 19 Worns MA, Galle PR. Novel inhibitors in development for hepatocellular carcinoma. Expert Opin Investig Drugs 2010; 19: 615-629
- 20 Zender L, Villanueva A, Tovar V et al. Cancer gene discovery in hepatocellular carcinoma. J Hepatol 2010; 52: 921-929