J Knee Surg 2012; 25(01): 017-022
DOI: 10.1055/s-0031-1299651
Special Focus Section
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

ACI and MACI

Elizaveta Kon
1   Biomechanics Laboratory – III Orthopaedic Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy
,
Giuseppe Filardo
1   Biomechanics Laboratory – III Orthopaedic Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy
,
Alessandro Di Martino
1   Biomechanics Laboratory – III Orthopaedic Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy
,
Maurilio Marcacci
1   Biomechanics Laboratory – III Orthopaedic Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy
› Institutsangaben
Weitere Informationen

Publikationsverlauf

23. Juni 2011

28. Oktober 2011

Publikationsdatum:
12. April 2012 (online)

Abstract

Regenerative procedures aim to recreate a hyaline-like tissue, thus restoring a biologically and biomechanically valid articular surface with durable clinical results. Autologous chondrocyte implantation (ACI) has been developed two decades ago, and both the production of a hyaline-like articular surface and a satisfactory clinical outcome have been documented at medium-long follow-up. Bioengineering technology further improved this regenerative treatment approach to include matrix-assisted ACI (MACI) techniques. These procedures have been introduced in the clinical practice one decade ago, showing similar results while at the same time overcoming most of the concerns related to the first-generation ACI. The use of scaffolds to create a cartilage-like tissue in a three-dimensional culture system allows for the optimization of the procedure from both the biological and surgical point of view. However, despite thousands of treated patients and many published studies suggesting good clinical results and durability of these procedures, the properties of healthy, normal articular cartilage are still unmatched by any available substitute. Both indications and results of these substitutes are still controversial. The role of many variables that may influence the final outcome still need to be clarified to further improve the potential benefits of these biological regenerative procedures.

 
  • References

  • 1 Buckwalter JA, Mankin HJ. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect 1998; 47: 477-486
  • 2 Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331 (14) 889-895
  • 3 Vasiliadis HS, Lindahl A, Georgoulis AD, Peterson L. Malalignment and cartilage lesions in the patellofemoral joint treated with autologous chondrocyte implantation. Knee Surg Sports Traumatol Arthrosc 2011; 19 (3) 452-457
  • 4 Minas T, Gomoll AH, Solhpour S, Rosenberger R, Probst C, Bryant T. Autologous chondrocyte implantation for joint preservation in patients with early osteoarthritis. Clin Orthop Relat Res 2010; 468 (1) 147-157
  • 5 Peterson L, Minas T, Brittberg M, Lindahl A. Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. J Bone Joint Surg Am 2003; 85-A (Suppl. 02) 17-24
  • 6 Peterson L, Brittberg M, Kiviranta I, Akerlund EL, Lindahl A. Autologous chondrocyte transplantation. Biomechanics and long-term durability. Am J Sports Med 2002; 30 (1) 2-12
  • 7 Peterson L, Vasiliadis HS, Brittberg M, Lindahl A. Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med 2010; 38 (6) 1117-1124
  • 8 Browne JE, Anderson AF, Arciero R , et al. Clinical outcome of autologous chondrocyte implantation at 5 years in US subjects. Clin Orthop Relat Res 2005; (436) 237-245
  • 9 Micheli LJ, Browne JE, Erggelet C , et al. Autologous chondrocyte implantation of the knee: multicenter experience and minimum 3-year follow-up. Clin J Sport Med 2001; 11 (4) 223-228
  • 10 Vasiliadis HS, Wasiak J. Autologous chondrocyte implantation for full thickness articular cartilage defects of the knee. Cochrane Database Syst Rev 2010; (10) CD003323
  • 11 Kon E, Delcogliano M, Filardo G, Montaperto C, Marcacci M. Second generation issues in cartilage repair. Sports Med Arthrosc 2008; 16 (4) 221-229
  • 12 Kon E, Verdonk P, Condello V , et al. Matrix-assisted autologous chondrocyte transplantation for the repair of cartilage defects of the knee: systematic clinical data review and study quality analysis. Am J Sports Med 2009; 37 (1, Suppl 1) 156S-166S
  • 13 Marcacci M, Zaffagnini S, Kon E, Visani A, Iacono F, Loreti I. Arthroscopic autologous chondrocyte transplantation: technical note. Knee Surg Sports Traumatol Arthrosc 2002; 10 (3) 154-159
  • 14 Erggelet C, Sittinger M, Lahm A. The arthroscopic implantation of autologous chondrocytes for the treatment of full-thickness cartilage defects of the knee joint. Arthroscopy 2003; 19 (1) 108-110
  • 15 Della Villa S, Kon E, Filardo G , et al. Does intensive rehabilitation permit early return to sport without compromising the clinical outcome after arthroscopic autologous chondrocyte implantation in highly competitive athletes?. Am J Sports Med 2010; 38 (1) 68-77
  • 16 Kon E, Filardo G, Condello V , et al. Second-generation autologous chondrocyte implantation: results in patients older than 40 years. Am J Sports Med 2011; 39 (8) 1668-1675
  • 17 Rosenberger RE, Gomoll AH, Bryant T, Minas T. Repair of large chondral defects of the knee with autologous chondrocyte implantation in patients 45 years or older. Am J Sports Med 2008; 36 (12) 2336-2344
  • 18 Farr J. Autologous chondrocyte implantation improves patellofemoral cartilage treatment outcomes. Clin Orthop Relat Res 2007; 463: 187-194
  • 19 Pascual-Garrido C, Slabaugh MA, L'Heureux DR, Friel NA, Cole BJ. Recommendations and treatment outcomes for patellofemoral articular cartilage defects with autologous chondrocyte implantation: prospective evaluation at average 4-year follow-up. Am J Sports Med 2009; 37 (1, Suppl 1) 33S-41S
  • 20 Minas T, Gomoll AH, Rosenberger R, Royce RO, Bryant T. Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques. Am J Sports Med 2009; 37 (5) 902-908
  • 21 Vasiliadis HS, Danielson B, Ljungberg M, McKeon B, Lindahl A, Peterson L. Autologous chondrocyte implantation in cartilage lesions of the knee: long-term evaluation with magnetic resonance imaging and delayed gadolinium-enhanced magnetic resonance imaging technique. Am J Sports Med 2010; 38 (5) 943-949
  • 22 Peterson L, Minas T, Brittberg M, Nilsson A, Sjögren-Jansson E, Lindahl A. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res 2000; (374) 212-234
  • 23 Minas T. Autologous chondrocyte implantation for focal chondral defects of the knee. Clin Orthop Relat Res 2001; (391, Suppl) S349-S361
  • 24 Henderson I, Francisco R, Oakes B, Cameron J. Autologous chondrocyte implantation for treatment of focal chondral defects of the knee—a clinical, arthroscopic, MRI and histologic evaluation at 2 years. Knee 2005; 12 (3) 209-216
  • 25 Gomoll AH, Probst C, Farr J, Cole BJ, Minas T. Use of a type I/III bilayer collagen membrane decreases reoperation rates for symptomatic hypertrophy after autologous chondrocyte implantation. Am J Sports Med 2009; 37 (1, Suppl 1) 20S-23S
  • 26 Gooding CR, Bartlett W, Bentley G, Skinner JA, Carrington R, Flanagan A. A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: Periosteum covered versus type I/III collagen covered. Knee 2006; 13 (3) 203-210
  • 27 Saris DB, Vanlauwe J, Victor J , et al. Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med 2008; 36 (2) 235-246
  • 28 Saris DB, Vanlauwe J, Victor J , et al; TIG/ACT/01/2000&EXT Study Group. Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. Am J Sports Med 2009; 37 (1, Suppl 1) 10S-19S
  • 29 Freed LE, Marquis JC, Nohria A, Emmanual J, Mikos AG, Langer R. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res 1993; 27 (1) 11-23
  • 30 Grigolo B, Lisignoli G, Piacentini A , et al. Evidence for redifferentiation of human chondrocytes grown on a hyaluronan-based biomaterial (HYAff 11): molecular, immunohistochemical and ultrastructural analysis. Biomaterials 2002; 23 (4) 1187-1195
  • 31 Kon E, Gobbi A, Filardo G, Delcogliano M, Zaffagnini S, Marcacci M. Arthroscopic second-generation autologous chondrocyte implantation compared with microfracture for chondral lesions of the knee: prospective nonrandomized study at 5 years. Am J Sports Med 2009; 37 (1) 33-41
  • 32 Behrens P, Bitter T, Kurz B, Russlies M. Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI)—5-year follow-up. Knee 2006; 13 (3) 194-202
  • 33 Ebert JR, Robertson WB, Woodhouse J , et al. Clinical and magnetic resonance imaging-based outcomes to 5 years after matrix-induced autologous chondrocyte implantation to address articular cartilage defects in the knee. Am J Sports Med 2011; 39 (4) 753-763
  • 34 Kreuz PC, Müller S, Ossendorf C, Kaps C, Erggelet C. Treatment of focal degenerative cartilage defects with polymer-based autologous chondrocyte grafts: four-year clinical results. Arthritis Res Ther 2009; 11 (2) R33
  • 35 Ferruzzi A, Buda R, Faldini C , et al. Autologous chondrocyte implantation in the knee joint: open compared with arthroscopic technique. Comparison at a minimum follow-up of five years. J Bone Joint Surg Am 2008; 90 (4, Suppl 4) 90-101
  • 36 Nehrer S, Dorotka R, Domayer S, Stelzeneder D, Kotz R. Treatment of full-thickness chondral defects with hyalograft C in the knee: a prospective clinical case series with 2 to 7 years' follow-up. Am J Sports Med 2009; 37 (Suppl. 01) 81S-87S
  • 37 Gobbi A, Kon E, Berruto M , et al. Patellofemoral full-thickness chondral defects treated with second-generation autologous chondrocyte implantation: results at 5 years' follow-up. Am J Sports Med 2009; 37 (6) 1083-1092
  • 38 Kon E, Filardo G, Berruto M , et al. Articular cartilage treatment in high-level male soccer players: a prospective comparative study of arthroscopic second-generation autologous chondrocyte implantation versus microfracture. Am J Sports Med 2011; 39 (12) 2549-2557
  • 39 Filardo G, Kon E, Di Martino A, Iacono F, Marcacci M. Arthroscopic second-generation autologous chondrocyte implantation: a prospective 7-year follow-up study. Am J Sports Med 2011; 39 (10) 2153-2160
  • 40 Filardo G, Kon E, Berruto M , et al. Arthroscopic second generation autologous chondrocytes implantation associated to bone grafting for the treatment of knee osteochondritis dissecans: results at 6 years. Knee 2011; ; November 22 (Epub ahead of print)
  • 41 Selmi TA, Verdonk P, Chambat P , et al. Autologous chondrocyte implantation in a novel alginate-agarose hydrogel: outcome at two years. J Bone Joint Surg Br 2008; 90 (5) 597-604
  • 42 Nehrer S, Chiari C, Domayer S, Barkay H, Yayon A. Results of chondrocyte implantation with a fibrin-hyaluronan matrix: a preliminary study. Clin Orthop Relat Res 2008; 466 (8) 1849-1855
  • 43 Dozin B, Malpeli M, Cancedda R , et al. Comparative evaluation of autologous chondrocyte implantation and mosaicplasty: a multicentered randomized clinical trial. Clin J Sport Med 2005; 15 (4) 220-226
  • 44 Horas U, Pelinkovic D, Herr G, Aigner T, Schnettler R. Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. A prospective, comparative trial. J Bone Joint Surg Am 2003; 85-A (2) 185-192
  • 45 Bentley G, Biant LC, Carrington RW , et al. A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br 2003; 85 (2) 223-230
  • 46 Fu FH, Zurakowski D, Browne JE , et al. Autologous chondrocyte implantation versus debridement for treatment of full-thickness chondral defects of the knee: an observational cohort study with 3-year follow-up. Am J Sports Med 2005; 33 (11) 1658-1666
  • 47 Visna P, Pasa L, Cizmár I, Hart R, Hoch J. Treatment of deep cartilage defects of the knee using autologous chondrograft transplantation and by abrasive techniques—a randomized controlled study. Acta Chir Belg 2004; 104 (6) 709-714
  • 48 Basad E, Ishaque B, Bachmann G, Stürz H, Steinmeyer J. Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study. Knee Surg Sports Traumatol Arthrosc 2010; 18 (4) 519-527
  • 49 Knutsen G, Engebretsen L, Ludvigsen TC , et al. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am 2004; 86-A (3) 455-464
  • 50 Knutsen G, Drogset JO, Engebretsen L , et al. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am 2007; 89 (10) 2105-2112
  • 51 Gille J, Schuseil E, Wimmer J, Gellissen J, Schulz AP, Behrens P. Mid-term results of autologous matrix-induced chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc 2010; 18 (11) 1456-1464
  • 52 Bedi A, Foo LF, Williams RJ , et al. The maturation of synthetic scaffolds for osteochondral donor sites of the knee: an MRI and T2-mapping analysis. Cartilage 2010; 1 (1) 20-28
  • 53 Kon E, Delcogliano M, Filardo G, Busacca M, Di Martino A, Marcacci M. Novel nano-composite multilayered biomaterial for osteochondral regeneration: a pilot clinical trial. Am J Sports Med 2011; 39 (6) 1180-1190