Semin Thromb Hemost 2011; 37(6): 690-697
DOI: 10.1055/s-0031-1291379
© Thieme Medical Publishers

Thrombocytopenias Due to Gray Platelet Syndrome or THC2 Mutations

Jorge Di Paola1 , Jan Johnson2
  • 1Department of Pediatrics, Human Medical Genetics Program, University of Colorado, Denver, School of Medicine, Aurora, Colorado
  • 2Research Scientist, Puget Sound Blood Center, Seattle, Washington
Further Information

Publication History

Publication Date:
18 November 2011 (online)

ABSTRACT

Over the last two decades the genetic causes of several Mendelian platelet disorders have been elucidated, while the genetics of many other thrombocytopenic conditions are still unresolved. Among those are the gray platelet syndrome (GPS) and the thrombocytopenia linked to the THC2 locus on human chromosome 10p11–12. GPS is an α-granule defect associated with the development of myelofibrosis and mild to moderate thrombocytopenia. Most forms of GPS are autosomal recessive, and recently, the recessive form of the disease was mapped to chromosome 3p21. THC2-linked thrombocytopenia is an autosomal dominant disorder in which affected family members have a mild reduction in platelet counts and occasional bleeding. Platelets in THC2-linked thrombocytopenia appear to be normal in size and function although bone marrow morphology reveals a lack of mature, polyploid megakaryocytes. To date, mutations in three different genes within the THC2 locus have been associated with congenital thrombocytopenia, including a mutation in MASTL. In this article, we summarize the recent discoveries in these two forms of thrombocytopenia, including the functional data that support a role for MASTL kinase in thrombopoiesis.

REFERENCES

  • 1 OMIM . (Online Mendelian Inheritance in Man.  http://www.ncbi.nlm.nih.gov/omim Accessed: 9 September 2011; 
  • 2 Raccuglia G. Gray platelet syndrome. A variety of qualitative platelet disorder.  Am J Med. 1971;  51 (6) 818-828
  • 3 Gerrard J M, Phillips D R, Rao G H et al.. Biochemical studies of two patients with the gray platelet syndrome. Selective deficiency of platelet alpha granules.  J Clin Invest. 1980;  66 (1) 102-109
  • 4 White J G. Ultrastructural studies of the gray platelet syndrome.  Am J Pathol. 1979;  95 (2) 445-462
  • 5 Nurden A T, Nurden P. The gray platelet syndrome: clinical spectrum of the disease.  Blood Rev. 2007;  21 (1) 21-36
  • 6 Hayward C P, Weiss H J, Lages B et al.. The storage defects in grey platelet syndrome and alphadelta-storage pool deficiency affect alpha-granule factor V and multimerin storage without altering their proteolytic processing.  Br J Haematol. 2001;  113 (4) 871-877
  • 7 Breton-Gorius J, Vainchenker W, Nurden A, Levy-Toledano S, Caen J. Defective alpha-granule production in megakaryocytes from gray platelet syndrome: ultrastructural studies of bone marrow cells and megakaryocytes growing in culture from blood precursors.  Am J Pathol. 1981;  102 (1) 10-19
  • 8 Drouin A, Favier R, Massé J M et al.. Newly recognized cellular abnormalities in the gray platelet syndrome.  Blood. 2001;  98 (5) 1382-1391
  • 9 Mitjavila M T, Vinci G, Villeval J L et al.. Human platelet alpha granules contain a nonspecific inhibitor of megakaryocyte colony formation: its relationship to type beta transforming growth factor (TGF-beta).  J Cell Physiol. 1988;  134 (1) 93-100
  • 10 Rosa J P, George J N, Bainton D F, Nurden A T, Caen J P, McEver R P. Gray platelet syndrome. Demonstration of alpha granule membranes that can fuse with the cell surface.  J Clin Invest. 1987;  80 (4) 1138-1146
  • 11 Gebrane-Younès J, Cramer E M, Orcel L, Caen J P. Gray platelet syndrome. Dissociation between abnormal sorting in megakaryocyte alpha-granules and normal sorting in Weibel-Palade bodies of endothelial cells.  J Clin Invest. 1993;  92 (6) 3023-3028
  • 12 Falik-Zaccai T C, Anikster Y, Rivera C E et al.. A new genetic isolate of gray platelet syndrome (GPS): clinical, cellular, and hematologic characteristics.  Mol Genet Metab. 2001;  74 (3) 303-313
  • 13 Gunay-Aygun M, Zivony-Elboum Y, Gumruk F et al.. Gray platelet syndrome: natural history of a large patient cohort and locus assignment to chromosome 3p.  Blood. 2010;  116 (23) 4990-5001
  • 14 Lo B, Li L, Gissen P et al.. Requirement of VPS33B, a member of the Sec1/Munc18 protein family, in megakaryocyte and platelet alpha-granule biogenesis.  Blood. 2005;  106 (13) 4159-4166
  • 15 White J G, Key N S, King R A, Vercellotti G M. The White platelet syndrome: a new autosomal dominant platelet disorder.  Platelets. 2004;  15 (3) 173-184
  • 16 White J G. Medich giant platelet disorder: a unique alpha granule deficiency I. Structural abnormalities.  Platelets. 2004;  15 (6) 345-353
  • 17 Kimura Y, Hart A, Hirashima M et al.. Zinc finger protein, Hzf, is required for megakaryocyte development and hemostasis.  J Exp Med. 2002;  195 (7) 941-952
  • 18 Detter J C, Zhang Q, Mules E H et al.. Rab geranylgeranyl transferase alpha mutation in the gunmetal mouse reduces Rab prenylation and platelet synthesis.  Proc Natl Acad Sci U S A. 2000;  97 (8) 4144-4149
  • 19 Tiwari S, Italiano Jr J E, Barral D C et al.. A role for Rab27b in NF-E2-dependent pathways of platelet formation.  Blood. 2003;  102 (12) 3970-3979
  • 20 Balduini C L, De Candia E, Savoia A. Why the disorder induced by GATA1 Arg216Gln mutation should be called “X-linked thrombocytopenia with thalassemia” rather than “X-linked gray platelet syndrome”.  Blood. 2007;  110 (7) 2770-2771 author reply 2771
  • 21 Mori K, Suzuki S, Akutsu Y, Ishikawa M, Sakai H. Gray platelet syndrome: relationship between morphological abnormality of the dense tubular system (DTS) and intracellular Ca +  + mobilization in the platelet.  Nippon Ketsueki Gakkai Zasshi. 1989;  52 (8) 1534-1541
  • 22 Tubman V N, Levine J E, Campagna D R et al.. X-linked gray platelet syndrome due to a GATA1 Arg216Gln mutation.  Blood. 2007;  109 (8) 3297-3299
  • 23 Oh J, Ho L, Ala-Mello S et al.. Mutation analysis of patients with Hermansky-Pudlak syndrome: a frameshift hot spot in the HPS gene and apparent locus heterogeneity.  Am J Hum Genet. 1998;  62 (3) 593-598
  • 24 Bénit L, Cramer E M, Massé J M, Dusanter-Fourt I, Favier R. Molecular study of the hematopoietic zinc finger gene in three unrelated families with gray platelet syndrome.  J Thromb Haemost. 2005;  3 (9) 2077-2080
  • 25 Chiang A P, Beck J S, Yen H J et al.. Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet-Biedl syndrome gene (BBS11).  Proc Natl Acad Sci U S A. 2006;  103 (16) 6287-6292
  • 26 Walsh T, Shahin H, Elkan-Miller T et al.. Whole exome sequencing and homozygosity mapping identify mutation in the cell polarity protein GPSM2 as the cause of nonsyndromic hearing loss DFNB82.  Am J Hum Genet. 2010;  87 (1) 90-94
  • 27 Fabbro S, Kahr W H, Hinckley J et al.. Homozygosity mapping with SNP arrays confirms 3p21 as a recessive locus for gray platelet syndrome and narrows the interval significantly.  Blood. 2011;  117 (12) 3430-3434
  • 28 Lander E S, Botstein D. Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children.  Science. 1987;  236 (4808) 1567-1570
  • 29 Alkan C, Sajjadian S, Eichler E E. Limitations of next-generation genome sequence assembly.  Nat Methods. 2011;  8 (1) 61-65
  • 30 Iolascon A, Perrotta S, Amendola G et al.. Familial dominant thrombocytopenia: clinical, biologic, and molecular studies.  Pediatr Res. 1999;  46 (5) 548-552
  • 31 Bithell T C, Didisheim P, Cartwright G E, Wintrobe M M. Thrombocytopenia inherited as an autosomal dominant trait.  Blood. 1965;  25 231-240
  • 32 Savoia A, Del Vecchio M, Totaro A et al.. An autosomal dominant thrombocytopenia gene maps to chromosomal region 10p.  Am J Hum Genet. 1999;  65 (5) 1401-1405
  • 33 Drachman J G, Jarvik G P, Mehaffey M G. Autosomal dominant thrombocytopenia: incomplete megakaryocyte differentiation and linkage to human chromosome 10.  Blood. 2000;  96 (1) 118-125
  • 34 Gandhi M J, Cummings C L, Drachman J G. FLJ14813 missense mutation: a candidate for autosomal dominant thrombocytopenia on human chromosome 10.  Hum Hered. 2003;  55 (1) 66-70
  • 35 Johnson H J, Gandhi M J, Shafizadeh E et al.. In vivo inactivation of MASTL kinase results in thrombocytopenia.  Exp Hematol. 2009;  37 (8) 901-908
  • 36 Woo A J, Moran T B, Schindler Y L et al.. Identification of ZBP-89 as a novel GATA-1-associated transcription factor involved in megakaryocytic and erythroid development.  Mol Cell Biol. 2008;  28 (8) 2675-2689
  • 37 Amigo J D, Ackermann G E, Cope J J et al.. The role and regulation of friend of GATA-1 (FOG-1) during blood development in the zebrafish.  Blood. 2009;  114 (21) 4654-4663
  • 38 VonDerLinden D, Ma X, Sandberg E M, Gernert K, Bernstein K E, Sayeski P P. Mutation of glutamic acid residue 1046 abolishes Jak2 tyrosine kinase activity.  Mol Cell Biochem. 2002;  241 (1-2) 87-94
  • 39 Yu J, Fleming S L, Williams B et al.. Greatwall kinase: a nuclear protein required for proper chromosome condensation and mitotic progression in Drosophila.  J Cell Biol. 2004;  164 (4) 487-492
  • 40 Yu J, Zhao Y, Li Z, Galas S, Goldberg M L. Greatwall kinase participates in the Cdc2 autoregulatory loop in Xenopus egg extracts.  Mol Cell. 2006;  22 (1) 83-91
  • 41 Burgess A, Vigneron S, Brioudes E, Labbé J C, Lorca T, Castro A. Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance.  Proc Natl Acad Sci U S A. 2010;  107 (28) 12564-12569
  • 42 Lorca T, Bernis C, Vigneron S et al.. Constant regulation of both the MPF amplification loop and the Greatwall-PP2A pathway is required for metaphase II arrest and correct entry into the first embryonic cell cycle.  J Cell Sci. 2010;  123 (Pt 13) 2281-2291
  • 43 Gharbi-Ayachi A, Labbé J C, Burgess A et al.. The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein phosphatase 2A.  Science. 2010;  330 (6011) 1673-1677
  • 44 Mochida S, Maslen S L, Skehel M, Hunt T. Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential for mitosis.  Science. 2010;  330 (6011) 1670-1673
  • 45 Punzo F, Mientjes E J, Rohe C F et al.. A mutation in the acyl-coenzyme A binding domain-containing protein 5 gene (ACBD5 ) identified in autosomal dominant thrombocytopenia.  J Thromb Haemost. 2010;  8 (9) 2085-2087
  • 46 Pippucci T, Savoia A, Perrotta S et al.. Mutations in the 5′ UTR of ANKRD26, the ankirin repeat domain 26 gene, cause an autosomal-dominant form of inherited thrombocytopenia, THC2.  Am J Hum Genet. 2011;  88 (1) 115-120
  • 47 Soupene E, Fyrst H, Kuypers F A. Mammalian acyl-CoA:lysophosphatidylcholine acyltransferase enzymes.  Proc Natl Acad Sci U S A. 2008;  105 (1) 88-93
  • 48 Fan J, Liu J, Culty M, Papadopoulos V. Acyl-coenzyme A binding domain containing 3 (ACBD3; PAP7; GCP60): an emerging signaling molecule.  Prog Lipid Res. 2010;  49 (3) 218-234
  • 49 Bera T K, Liu X F, Yamada M et al.. A model for obesity and gigantism due to disruption of the Ankrd26 gene.  Proc Natl Acad Sci U S A. 2008;  105 (1) 270-275
  • 50 Kahr W HA, Hinckley J, Li L et al.. Mutations in NBEAL2, encoding a BEACH protein, cause gray platelet syndrome.  Nat Genet. 2011;  43 (8) 738-740
  • 51 Gunay-Aygun M, Falik-Zaccai T C, Vilboux T et al.. NBEAL2 is mutated in gray platelet syndrome and is required for biogenesis of platelet a-granules.  Nat Genet. 2011;  43 (8) 732-734
  • 52 Albers C A, Cvejic A, Favier R et al.. Exome sequencing identifies NBEAL2 as the causative gene for gray platelet syndrome.  Nat Genet. 2011;  43 (8) 735-737

Jorge Di PaolaM.D. 

Human Medical Genetics Program, University of Colorado, Denver, School of Medicine, Mail Stop 8302, Building RC-1 North

12800 East 19th Avenue, P.O. Box 6511, Aurora, Colorado 80045

Email: jorge.dipaola@ucdenver.edu