Int J Sports Med 2012; 33(04): 291-296
DOI: 10.1055/s-0031-1291223
Training & Testing
© Georg Thieme Verlag KG Stuttgart · New York

Decreased Training Volume and Increased Carbohydrate Intake Increases Oxidized LDL Levels

I. A. Välimäki
1   Department of Health and Exercise, University of Turku, Finland
,
T. Vuorimaa
2   Sport Institute of Finland, Vierumäki Sports Institute, Vierumäki, Finland
,
M. Ahotupa
3   Department of Biochemistry and Food Chemistry, University of Turku, Finland
,
R. Kekkonen
4   Valio Ltd, Helsinki, Finland
,
R. Korpela
5   Insitute of Biomedicine, University of Helsinki, Finland
,
T. Vasankari
6   UKK Institute for Health Promotion Research, Tampere, Finland
› Author Affiliations
Further Information

Publication History



accepted after rivision 29 August 2011

Publication Date:
29 February 2012 (online)

Abstract

We studied effects of probiotics and training volume on oxidized LDL lipids (ox-LDL), serum antioxidant potential (s-TRAP) and serum antioxidants (s-α-tocopherol, s-γ-tocopherol, s-retinol, s-β-carotene and s-ubiquinone-10) in marathon runners during 3-months training period, 6-days preparation period and marathon run. Runners (n=127) were recruited for a randomized, double-blind intervention during which they received either Lactobacillus rhamnosus GG (LGG, probiotic group) or placebo drink (placebo group) during whole study. During the preparation period, subjects decreased training and increased carbohydrate intake. Blood samples were taken at baseline, before 6-days preparation, before and immediately after the marathon. Probiotics did not have any effect on ox-LDL, s-TRAP or serum antioxidants levels during the study. Interestingly, ox-LDL increased by 28% and 33% during the preparation period and decreased by 16% and 19% during the marathon run in the placebo and probiotic groups, respectively (in all, P<0.001). No changes were seen in s-TRAP before marathon, but during run s-TRAP raised by 16% in both groups (both, P<0.001). The increase of ox-LDL level during the preparative period after several months’ training suggests that aerobic training may reduce the concentration of ox-LDL and that decrease of training together with increased energy intake, mainly carbohydrate, before marathon is capable of increasing the level of ox-LDL.

 
  • References

  • 1 Ahotupa M, Marniemi J, Lehtimäki T, Talvinen K, Raitakari OT, Vasankari T, Viikari J, Luoma J, Ylä-Herttuala S. Baseline diene conjugation in LDL lipids as a direct measure of in vivo LDL oxidation. Clin Biochem 1998; 31: 257-261
  • 2 Ahotupa M, Ruutu M, Mäntylä E. Simple methods of quantifying oxidation products and antioxidant potential of low density lipoproteins. Clin Biochem 1996; 29: 139-144
  • 3 Ahotupa M, Saxelin M, Korpela R. Antioxidant properties of Lactobacillus GG. Nutrition Today 1996; 31: 51-52
  • 4 Ahotupa M, Suomela JP, Vuorimaa T, Vasankari T. Lipoprotein-specific transport of circulating lipid peroxides. Ann Med 2010; 42: 521-529
  • 5 Ahotupa M, Vasankari T. Baseline diene conjugation in LDL lipids: An indicator of circulating oxidized LDL. Free Radic Biol Med 1999; 27: 1141-1150
  • 6 Brites F, Zago V, Verona J, Muzzio ML, Wikinski R, Schreier L. HDL capacity to inhibit LDL oxidation in well-trained triathletes. Life Sci 2006; 78: 3074-3081
  • 7 Clancy RL, Gleeson M, Cox A, Callister R, Dorrington M, D'Este C, Pang G, Pyne D, Fricker P, Henriksson A. Reversal in fatigued athletes of a defect in interferon secretion after administration of Lactobacillus acidophilus. Br J Sports Med 2006; 40: 351-354
  • 8 Durstine JL, Haskell WL. Effects of exercise on plasma lipids and lipoproteins. Exerc Sport Sci Sports 1996; 6: 303-308
  • 9 Fisher-Wellman K, Bloomer RJ. Acute exercise and oxidative stress: a 30 year history. Dyn Med 2009; 8: 1
  • 10 Hargreaves M. Muscle glycocen and metabolic regulation. Proc Nutr Soc 2004; 62: 217-220
  • 11 Harriss DJ, Atkinson G. Update – Ethical standards in sport and exercise science research. Int J Sports Med 2011; 32: 819-821
  • 12 Howatson G, McHugh MP, Hill JA, Brouner J, Jewell AP, van Someren KA, Shave RE, Howatson SA. Influence of tart cherry juice on indices of recovery following marathon running. Scand J Med Sci Sports 2010; 20: 843-852
  • 13 Jenkins RR. Free radical chemistry. Relationship to exercise. Sports Med 1988; 5: 156-170
  • 14 Kanter MM, Nolte LA, Holloczy JO. Effects of an antioxidant vitamin mixture on lipid peroxidation at rest and postexercise. J Appl Physiol 1993; 74: 965-969
  • 15 Kaur H, Halliwell B. Action of biologically-relevant oxidizing species upon uric acid. Identification of uric acid oxidation products. Chem Biol Interact 1990; 73: 235-247
  • 16 Kekkonen RA, Vasankari TJ, Vuorimaa T, Haahtela T, Julkunen I, Korpela R. The effect of probiotics on respiratory infections and gastrointestinal symptoms during training in marathon runners. Int J Sport Nutr Exerc Metab 2007; 17: 352-363
  • 17 Kontush A, Chantepie S, Chapman MJ. Small dense HDL particles exert potent protection of atherogenic LDL against oxidative stress. Arterioscler Thromb Vasc Biol 2003; 23: 1881-1888
  • 18 Kujala UM, Ahotupa M, Vasankari T, Kaprio J, Tikkanen MJ. Low LDL oxidation in veteran endurance athletes. Scand J Med Sci Sports 1996; 6: 303-308
  • 19 Linna M, Borg P, Kukkonen-Harjula K, Fogelholm M, Nenonen A, Ahotupa M, Vasankari TJ. Successful weight maintenance preserves lower levels of oxidized LDL achieved by weight reduction in obese men. Int J Obes 2007; 31: 245-253
  • 20 Machefer G, Groussard C, Vincent S, Zouhal H, Faure H, Cillard J, Radák Z, Gratas-Delamarche A. Multivitamin-mineral supplementation prevents lipid peroxidation during "the Marathon des Sables". J Am Coll Nutr 2007; 26: 111-120
  • 21 Milne DB, Bottnen J. Retinol, α-tocopherol, lycopene, and alpha- and beta-carotene simultaneously determined in plasma by isocratic liquid chromatography. Clin Chem 1986; 32: 874-876
  • 22 Pujol PHJ, Huguet J, Drobnic F, Banquells M, Ruiz O, Galilea P, Segarra N, Aguilera S, Burnat A, Mateos JA, Postaire E. The effect of fermented milk containing Lactobacillus casei on the immune response to exercise. Sports Med Training Rehab 2000; 9: 209-223
  • 23 Pyörälä K, De Backer G, Graham I, Poole-Wilson, Wood D. Prevention of CHD in clinical practise: recommendations of Task Force of the European Society of Cardiology, European Atherosclerosis Society and European Society of Hypertension. Eur Heart J 1994; 15: 1300-1331
  • 24 Scherr J, Nieman DC, Schuster T, Habermann J, Rank M, Braun S, Pressler A, Wolfarth B, Halle M. Non-alcoholic beer reduces inflammation and incidence of respiratory tract illness. Med Sci Sports Exerc 2011; [Epub ahead of print]
  • 25 Sherman WM, Costill DL, Fink WJ, Miller JM. Effect of exercise-diet manipulation on muscle glycogen and its subsequent utilization during performance. Int J Sports Med 1981; 2: 114-118
  • 26 Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol: modifications of low-density lipoproteins that increase its atherogenicity. N Eng J Med 1989; 320: 915-924
  • 27 Sureda A, Tauler P, Aguiló A, Cases N, Llompart I, Tur JA, Pons A. Influence of an antioxidant vitamin-enriched drink on pre- and post-exercise lymphocyte antioxidant system. Ann Nutr Metab 2008; 52: 233-240
  • 28 Svensson MB, Ekblom B, Cotgreave IA, Norman B, Sjöberg B, Ekblom O, Sjödin B, Sjödin A. Adaptive stress response of glutathione and uric acid metabolism in man following controlled exercise and diet. Acta Physiol Scand 2002; 176: 43-56
  • 29 Takada M, Ikenoya S, Yuzuriha T, Katayama K. Simultaneous determination of reduced and oxidized ubiquinones. Methods Enzymol 1985; 105: 147-155
  • 30 Vasankari TJ, Kujala UM, Vasankari TM, Ahotupa M. Reduced oxidized LDL levels after 10-months exercise program. Med Sci Sports Exerc 1998; 30: 1496-1501
  • 31 Vasankari TJ, Kujala UM, Vasankari TM, Vuorimaa T, Ahotupa M. Effects of acute prolonged exercise on serum and LDL oxidation and antioxidant defences. Free Radic Biol Med 1997; 22: 509-513
  • 32 Vasankari TJ, Lehtonen-Veromaa M, Möttönen T, Ahotupa M, Irjala K, Heinonen O, Leino A, Viikari J. Reduced mildly oxidized LDL in young female athletes. Atherosclerosis 2000; 151: 399-405
  • 33 Vasankari TJ, Ahotupa M, Toikka J, Mikkola J, Irjala K, Pasanen P, Neuvonen K, Raitakari O, Viikari J. Oxidized LDL and thickness of carotid intima-media are associated with coronary atherosclerosis in middle-aged men: lower levels of oxidized LDL with statin therapy. Atherosclerosis 2001; 155: 403-412
  • 34 Vuorimaa T, Ahotupa M, Irjala K, Vasankari T. Acute prolonged exercise reduces moderately oxidized LDL in healthy men. Int J Sports Med 2005; 26: 420-425
  • 35 Witztum JL. The oxidation hypothesis of atherosclerosis. Lancet 1994; 344: 793-795