Synlett 2012; 23(11): 1643-1648
DOI: 10.1055/s-0031-1291159
letter
© Georg Thieme Verlag Stuttgart · New York

DDQ-Promoted C–S Bond Formation: Synthesis of 2-Aminobenzothiazole Derivatives under Transition-Metal-, Ligand-, and Base-Free Conditions

Rui Wang*
a   School of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing 400054, P. R. of China, Fax: +86(23)62563182   Email: wangrx1022@163.com
,
Wen-juan Yang
a   School of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing 400054, P. R. of China, Fax: +86(23)62563182   Email: wangrx1022@163.com
,
Liang Yue
a   School of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing 400054, P. R. of China, Fax: +86(23)62563182   Email: wangrx1022@163.com
,
Wei Pan
a   School of Pharmacy & Bioengineering, Chongqing University of Technology, Chongqing 400054, P. R. of China, Fax: +86(23)62563182   Email: wangrx1022@163.com
,
Hong-yao Zeng
b   Department of Chemistry and Life Sciences, Leshan Normal University, Leshan 614000, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 07 March 2012

Accepted after revision: 16 April 2012

Publication Date:
11 June 2012 (online)


Abstract

A transition-metal-free method for the intramolecular S-arylation of o-halobenzothiaoureas via DDQ-mediated leading to the 2-aminobenzothiazole derivatives is reported. The reactions are performed at room temperature under ligand- and base-free conditions with good to excellent yields.

 
  • References and Notes

    • 1a Paget CJ, Kisner K, Stone RL, DeLong DC. J. Med. Chem. 1969; 12: 1016
    • 1b Young RC, Mitchell RC, Brown TH, Ganellin CR, Griffiths R, Jones M, Rana KK, Saunders D, Smith IR, Sore NE, Wilks TJ. J. Med. Chem. 1988; 31: 656
  • 2 Hays SJ, Rice MJ, Ortwine DF, Johnson G, Schwartz RD, Boyd DK, Copeland LF, Vartanian MG, Boxer PA. J. Pharm. Sci. 1994; 83: 1425
  • 3 Shirke VG, Bobade AS, Bhamaria RP, Khadse BG, Sengupta SR. Indian Drugs 1990; 27: 350
  • 4 Suter H, Zutter H. Helv. Chim. Acta 1967; 50: 1084
    • 5a Bose DS, Idrees M. Tetrahedron Lett. 2007; 48: 669
    • 5b Bose DS, Idrees M. J. Org. Chem. 2006; 71: 8261
    • 5c Downer-Riley NK, Jackson YA. Tetrahedron 2008; 64: 7741
    • 5d Xian H, Jing T. Tetrahedron 2003; 59: 4851
    • 5e Garin J, Melendez E, Merchan FL, Merino P, Orduna J, Tejero T. Synth. Commun. 1990; 20: 2327

      For metal-catalyzed intramolecular cyclizations of 2-halobenzothioureas, see:
    • 6a Joyce LL, Evindar G, Batey RA. Chem. Commun. 2004; 446
    • 6b Evindar G, Batey RA. J. Org. Chem. 2006; 71: 1802
    • 6c Wang J, Peng F, Jiang J, Lu Z, Wang L, Bai J, Pan Y. Tetrahedron Lett. 2008; 49: 467
    • 6d Benedí C, Bravo F, Uriz P, Fernandez E, Claver C, Castillon S. Tetrahedron Lett. 2003; 44: 6073

    • Tandem addition–C–S coupling reaction:
    • 6e Pi S.-S, Zhang X.-G, Tang R.-Y, Li J.-H. Synlett 2009; 3032

    • See also:
    • 6f Ding QP, He X.-D, Wu J. J. Comb. Chem. 2009; 11: 587

    • See also:
    • 6g Qiu J, Zhang X, Tang R.-Y, Zhong P, Li J.-H. Adv. Synth. Catal. 2009; 351: 2319

    • See further:
    • 6h Guo Y, Tang R.-Y, Zhong P, Li J.-H. Tetrahedron Lett. 2010; 51: 649

    • See also:
    • 6i Ding QP, Cao BP, Liu XJ, Zong Z.-Z, Peng YY. J. Green Chem. 2010; 12: 1607
    • 6j Oxidative C–H bond functionalization: Joyce LL, Batey RA. Org. Lett. 2009; 11: 2792
    • 7a Baltabaev UA, Makhsumov AG, Zakirov UB, Babaev ID, Shukurullaev K. Pharm. Chem. J. 2002; 36: 77
    • 7b Belboukhari N, Cheriti A, Djafri A, Roussel C. Asian J. Chem. 2008; 20: 2491
    • 7c Ramadas K, Srinivasan N, Narayanasamy J. Tetrahedron Lett. 1993; 34: 6447
  • 8 Bahrami K, Khodaei MM, Naali F. J. Org. Chem. 2008; 73: 6835
  • 9 Mohammadpoor-Baltork I, Ali Zolfigolb MA, Abdollahi-Alibeika M. Tetrahedron Lett. 2004; 45: 8687
  • 10 Bose DS, Idrees M. J. Org. Chem. 2006; 71: 8261
  • 11 Typical Procedure To a solution of (o-iodoaryl) thiaoureas (1.0 mmol) in DMSO (3 mL) were added DDQ in five equal portions. The mixture was stirred at r.t. for 24 h (TLC monitoring). After the reaction was completed, H2O (10 mL) and a sat. aq NaHCO3 solution (5 mL) were added, and then the aqueous solution was extracted with EtOAc (3 × 15 mL). The combined organic extracts were dried over anhyd Na2SO4 and concentrated, and then the residue was purified by column chromatography [eluent: PE–EtOAc (5:1 to 7:1)] on silica gel to provide the desired product. Compound 2a: 1H NMR (400 MHz, CDCl3): δ = 7.16–7.18 (m, 2 H), 7.33 (t, J = 7.3 Hz, 1 H), 7.40 (t, J = 8.3 Hz, 2 H), 7.50 (d, J = 7.7 Hz, 2 H), 7.60 (d, J = 8.0 Hz, 1 H), 7.63 (d, J = 7.9 Hz, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 119.5, 120.0, 120.8, 122.6, 124.3, 126.2, 129.6, 130.0, 139.7, 151.4, 164.1 ppm. ESI-HRMS: m/z calcd for [C13H10N2S + H]+ : 227.0643; found: 227.0649. Compound 2c: 1H NMR (400 MHz, DMSO-d 6): δ = 7.14 (t, J = 8.4 Hz, 1 H), 7.31 (t, J = 7.6 Hz, 1 H), 7.40 (d, J = 8.8 Hz, 2 H), 7.57 (d, J = 8 Hz, 2 H), 7.80 (d, J = 10 Hz, 2 H), 10.62 (br, 1 H) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 119.6, 119.8, 121.6, 123.0, 125.8, 126.4, 129.3, 130.5, 140.0, 152.4, 161.7 ppm. ESI-HRMS: m/z calcd for [C13H9ClN2S + H]+: 260.0175; found: 260.0183. Compound 2h: 1H NMR (400 MHz, DMSO-d 6): δ = 2.35 (s, 3 H), 7.14 (d, J = 8.2 Hz, 1 H), 7.49–7.54 (m, 3 H), 7.62 (s, 1 H), 7.79 (d, J = 8.8 Hz, 2 H), 10.53 (br, 1 H) ppm. 13C NMR (100 MHz, DMSO-d 6): δ = 21.3, 113.5, 119.5, 119.9, 121.5, 127.5, 130.5, 132.1, 132.3, 10.5, 150.3, 160.9 ppm. ESI-HRMS: m/z calcd for [C14H11BrN2S + H]+: 318.9905; found: 318.9937. Compound 2t: 1H NMR (400 MHz, CDCl3): δ = 1.15–1.41 (m, 5 H), 1.51–1.56 (m, 1 H), 1.67–1.73 (m, 2 H), 2.05–2.30 (m, 2 H), 2.66–2.69 (m, 1 H), 3.50 (br s, 1 H), 6.99 (t, J = 2.4, 9.3 Hz, 1 H), 7.27 (dd, J = 2.4, 7.8 Hz, 1 H), 7.42 (dd, J = 4.9, 8.8 Hz, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 24.7, 25.5, 33.5, 57.6, 121.1, 121.3, 123.6, 128.9, 136.9, 152.4, 165.7 ppm. ESI-HRMS: m/z calcd for [C13H16N2S + H]+: 233.1112; found: 233.1140