Synthesis 2012; 44(11): 1663-1666
DOI: 10.1055/s-0031-1290986
paper
© Georg Thieme Verlag Stuttgart · New York

Protecting Group-Free Syntheses of (4S,5S,11R)- and (4S,5S,11S)-iso-Cladospolide B and Their Biological Evaluation

Chada Raji Reddy*
a   Division of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
,
Nagavaram Narsimha Rao
a   Division of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
,
Pombala Sujitha
b   Chemical Biology Laboratory, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India, Fax: +91(40)27160512   Email: rajireddy@iict.res.in
,
Chityal Ganesh Kumar
b   Chemical Biology Laboratory, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India, Fax: +91(40)27160512   Email: rajireddy@iict.res.in
› Author Affiliations
Further Information

Publication History

Received: 20 February 2012

Accepted after revision: 03 April 2012

Publication Date:
09 May 2012 (online)


Abstract

Short and efficient total syntheses of (4S,5S,11R)- and (4S,5S,11S)-iso-cladospolide B were achieved in five steps each without using any protecting groups. The key steps were an alkyne-zipper reaction, a Suzuki cross coupling, and a Sharpless asymmetric dihydroxylation. The biological activities of both natural products toward various cancer cell lines were tested for the first time.

 
  • References

  • 1 Cameron JS, Abbanat D, Bernan VS, Maiese WM, Greenstein M, Jompa J, Tahir A, Ireland CM. J. Nat. Prod. 2000; 63: 142
  • 2 Franck X, Vaz Araujo ME, Jullian J.-C, Hocquemiller R, Figadère B. Tetrahedron Lett. 2001; 42: 2801
    • 3a Si D, Sekar NM, Kaliappan KP. Org. Biomol. Chem. 2011; 9: 6988
    • 3b Srihari P, Bhasker EV, Harshavasdhan SJ, Yadav JS. Synthesis 2006; 4041
    • 3c Sharma GV. M, Reddy JJ, Reddy KL. Tetrahedron Lett. 2006; 47: 6531
    • 3d Pandey SK, Kumar P. Tetrahedron Lett. 2005; 46: 6625
  • 4 Gesner S, Cohen N, Ilan M, Yarden O, Carmeli S. J. Nat. Prod. 2005; 68: 1350
  • 5 Trost BM, Aponick A. J. Am. Chem. Soc. 2006; 128: 3931
    • 9a Schweitzer S, Voss G, Gerlach H. Liebigs Ann. Chem. 1994; 189
    • 9b Kimmel T, Becker D. J. Org. Chem. 1984; 49: 2494
    • 9c Brown CA, Yamashita A. J. Am. Chem. Soc. 1975; 97: 891
    • 9d An improvement in the yield was observed when KH was used instead of NaH
  • 10 Conversion of alkyne 5 into dienoate 8 gave an inseparable mixture of isomers (Scheme 3)
  • 11 Brown HC, Bhat NG, Somayaji V. Organometallics 1983; 2: 1311
  • 12 Marek I, Meyer C, Normant J.-F. Org. Synth. Coll. Vol. IX . John Wiley & Sons; London: 1998: 510
    • 13a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 13b Frank SA, Chen H, Kunz RK, Schnaderbeck MJ, Roush WR. Org. Lett. 2000; 2: 2691
    • 14a Xu D, Crispino GA, Sharpless KB. J. Am. Chem. Soc. 1992; 114: 7570
    • 14b Kolb HC, VanNieuwenhze MS, Sharpless KB. Chem. Rev. 1994; 94: 2483
  • 15 Mosmann T. J. Immunol. Methods 1983; 65: 55
  • 16 The antimicrobial activity was tested against seven strains of bacteria (Bacillus subtilis MTCC 121, Staphylococcus aureus MTCC 96, S. aureus MLS16 MTCC 2940, Micrococcus luteus MTCC 2470, Escherichia coli MTCC 739, Klebsiella planticola MTCC 530, and Pseudomonas aeruginosa MTCC 2453) and one fungal strain (Candida albicans MTCC 3017)