Synlett 2012; 23(9): 1327-1330
DOI: 10.1055/s-0031-1290937
letter
© Georg Thieme Verlag Stuttgart · New York

Synthetic Study of the Angular Tetracyclic Core Skeleton of Landmycine A via Masamune–Bergman Cyclization

Sho Yamaguchi
a   Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan, Fax: +81(3)57342884   Email: thiroshi@apc.titech.ac.jp
,
Hiroshi Tanaka*
a   Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan, Fax: +81(3)57342884   Email: thiroshi@apc.titech.ac.jp
,
Ryo Yamada
b   Department of Organic and Polymer Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology 2-12-1-E4-6, ­Ookayama, Meguro, Tokyo 152-8552, Japan, Email: skawauchi@polymer.titech.ac.jp
,
Susumu Kawauchi
b   Department of Organic and Polymer Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology 2-12-1-E4-6, ­Ookayama, Meguro, Tokyo 152-8552, Japan, Email: skawauchi@polymer.titech.ac.jp
,
Takashi Takahashi*
a   Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan, Fax: +81(3)57342884   Email: thiroshi@apc.titech.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 13 February 2012

Accepted after revision: 13 March 2012

Publication Date:
14 May 2012 (online)


Abstract

We describe the synthesis, via Masamune–Bergman cyclization, of an angucycline derivative involving a quinone in the B ring and a nonaromatic hydroxylated C ring. The naphthoquinone was synthesized via the copper-catalyzed Ullmann reaction of the dihalo aryl moiety, and the subsequent oxidation of a corresponding hydroquinone. The aryl dihalide was prepared by the dihalogenation of the 1,4-diradical generated during the Masamune–Bergman cyclization of the 1,2- dialkynylbenzene under neutral conditions. This methodology suggests a new route for the construction of natural products containing an anthraquinone skeleton.

Supporting Information

 
  • References and Notes


    • Landomycin derivatives:
    • 1a Henkel T, Rohr J, Beale JM, Schwenen L. J. Antibiot. 1990; 43: 492
    • 1b Rohr J, Thiericke R. Nat. Prod. Rep. 1992; 9: 103
    • 1c Weber S, Zolke S, Rohr J, Beale JM. J. Org. Chem. 1994; 59: 4211
    • 1d Krohn K, Rohr J. Top. Curr. Chem. 1997; 188: 127
    • 1e Rohr J, Wohlert SE, Oelkers C, Kirschning A, Ries M. Chem. Commun. 1997; 973
    • 1f Crow RT, Rosenbaum B, Smith R, Guo Y, Ramos KS, Sulikowski GA. Bioorg. Med. Chem. Lett. 1999; 9: 1663
    • 1g Zhu L, Luzhetsky A, Luzhetska M, Mattingly C, Adams V, Bechthold A, Rohr J. ChemBioChem 2007; 8: 83
  • 2 Kanamaru T, Nozaki Y, Muroi M. JP 02-289-532/1990, 1991 ; Chem. Abstr. 1991, 115, 47759n
  • 3 Rohr J, Thiericke R. Nat. Prod. Rep. 1992; 9: 103
    • 4a Kim K, Guo Y, Sulikowski GA. J. Org. Chem. 1995; 60: 6866
    • 4b Larsen DS, O’Shea MD. J. Org. Chem. 1996; 61: 5681
    • 4c Hauser FM, Dorsch WA, Mal D. Org. Lett. 2002; 4: 2237
    • 4d Roush WR, Neitz RJ. J. Org. Chem. 2004; 69: 4906
    • 4e Ohmori K, Mori K, Ishikawa Y, Tsuruta H, Kuwahara S, Harada N, Suzuki K. Angew. Chem. Int. Ed. 2004; 43: 3167 ; Angew. Chem. 2004, 116, 3229
    • 4f Mori K, Tanaka Y, Ohmori K, Suzuki K. Chem. Lett. 2008; 37: 470
    • 4g Mori K, Ohmori K, Suzuki K. Angew. Chem. Int. Ed. 2009; 48: 5633 ; Angew. Chem. 2009, 121, 5743
    • 4h Bugaut X, Guinchard X, Roulland E. J. Org. Chem. 2010; 75: 8190
    • 4i Yang X, Fu B, Yu B. J. Am. Chem. Soc. 2011; 133: 12433
    • 5a Grissom JW, Gunawardena GU. Tetrahedron Lett. 1995; 36: 4951
    • 5b Jones GB, Plourde II GW. Org. Lett. 2000; 2: 1757
    • 6a Darby N, Kim CU, Salaun JA, Shelton KW, Takada S, Masamune S. J. Chem. Soc. 1971; 23: 1516
    • 6b Jones RP, Bergman RG. J. Am. Chem. Soc. 1972; 94: 660
    • 7a Goldberg IH. Acc. Chem. Res. 1991; 24: 191
    • 7b Maretina IA, Trofimov BA. Russ. Chem. Rev. 2006; 75: 825

      Our previous works:
    • 8a Doi T, Takahashi T. J. Org. Chem. 1991; 56: 3465
    • 8b Takahashi T, Tanaka H, Yamada H, Matsumoto T, Sugiura Y. Angew. Chem., Int. Ed. Engl. 1996; 35: 1835
    • 8c Tanaka H, Tanaka Y, Minoshima M, Yamaguchi S, Fuse S, Doi T, Kawauchi S, Sugiyama H, Takahashi T. Chem. Commun. 2010; 46: 5942
  • 9 Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam N. J., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas Ö., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J.; Gaussian 09, Revision A.1; Gaussian, Inc.: Wallingford (CT, USA), 2009
  • 10 Jones GB, Warner PM. J. Am. Chem. Soc. 2001; 123: 2134
  • 11 Nicolaou KC, Liu A, Zeng Z, McComb S. J. Am. Chem. Soc. 1992; 114: 9279
  • 12 Tsukamoto H, Ueno T, Kondo Y. J. Am. Chem. Soc. 2006; 128: 1406
    • 14a Takai K, Takashiro M, Kuroda T, Oshima K, Utimoto K, Nozaki H. J. Am. Chem. Soc. 1986; 108: 6048
    • 14b Crevisy C, Beau J.-M. Tetrahedron Lett. 1991; 32: 3171
    • 15a Toda F, Tanaka K, Sano I, Isozaki T. Angew. Chem., Int. Ed. Engl. 1994; 33: 1757 ; Angew. Chem. 1994, 106, 1856
    • 15b Semmelhack MF, Neu T, Foubelo F. Tetrahedron Lett. 1992; 33: 3277
  • 17 Analytical Data for 4b 1H NMR (400 MHz, CDCl3): δ = 8.40 (m, 1 H), 8.26–8.20 (m, 2 H), 7.64–7.56 (m, 2 H), 7.36–7.32 (m, 3 H), 5.46 (t, 1 H, J = 2.9 Hz), 3.15 (dd, 1 H, J = 2.9, 15.4 Hz), 3.10 (dd, 1 H, J = 2.9, 15.4 Hz). 13C NMR (100 MHz, CDCl3): δ = 140.8, 139.0, 136.8, 135.40, 135.16, 134.66, 134.33, 133.9, 132.9, 132.7, 131.6, 130.2, 129.3, 129.1, 129.0, 128.7, 128.4, 127.6, 127.1, 126.0, 108.5, 102.4, 74.6, 49.4, 37.4. IR (neat): 3437, 3019, 1722, 1216, 1045, 753, 667 cm–1. HRMS (ESI-TOF): m/z calcd [M + H]+: 498.9056; found: 498.9035
  • 18 Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400 ; Angew. Chem. 2003, 115, 5558
  • 19 Taber DF, Neubert TD, Rheingold AL. J. Am. Chem. Soc. 2002; 124: 12416
  • 20 Yamamoto Y, Takuma R, Hotta T, Yamashita K. J. Org. Chem. 2009; 74: 4324
  • 21 Analytical Data for 3 1H NMR (400 MHz, CDCl3): δ = 8.24 (m, 1 H), 8.18 (m, 1 H), 8.14 (m, 1 H), 7.82–7.74 (m, 2 H), 7.44–7.35 (m, 3 H), 5.30 (t, 1 H, J = 4.8 Hz), 3.23 (dd, 1 H, J = 4.8, 15.5 Hz), 3.11 (dd, 1 H, J = 4.8, 15.5 Hz). 13C NMR (100 MHz, CDCl3): δ = 185.5, 185.1, 139.8, 138.6, 135.8, 134.0, 133.8, 132.9, 131.8, 130.8, 130.6, 129.3, 127.9, 127.2, 126.9, 126.0, 61.5, 35.5. IR (neat): 3446, 2927, 1652, 1305, 1054, 763 cm–1. HRMS (ESI-TOF): m/z calcd [M + H]+ 277.0865; found: 277.0860