Synlett 2012; 23(7): 1064-1068
DOI: 10.1055/s-0031-1290757
letter
© Georg Thieme Verlag Stuttgart · New York

Meerwein’s Reagent Mediated, Significantly Enhanced Nucleophilic Fluorination on Alkoxysilanes

Yogesh R. Jorapur
a   Department of Chemical Engineering, Nara National College of Technology, 22 Yata-cho Yamatokoriyama, Nara, 639-1080, Japan
b   Core Research for Evolutional Science and Technology (CREST), JST Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan, Fax: +81(743)556154   eMail: shimada@chem.nara-k.ac.jp
,
Toyoshi Shimada*
a   Department of Chemical Engineering, Nara National College of Technology, 22 Yata-cho Yamatokoriyama, Nara, 639-1080, Japan
b   Core Research for Evolutional Science and Technology (CREST), JST Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan, Fax: +81(743)556154   eMail: shimada@chem.nara-k.ac.jp
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 24. Januar 2012

Accepted after revision: 14. Februar 2012

Publikationsdatum:
05. April 2012 (online)


Abstract

We developed a new facile method to fluorosilanes from alkoxysilanes using Meerwein’s reagent. Our protocol afforded fluo­rosilanes in excellent yields in various organic solvents including acetonitrile under mild reaction conditions at room temperature. We also proposed a reaction mechanism with the probable silyloxonium intermediates.

Supporting Information

 
  • References and Notes

    • 1a Birkofer L, Stuhl O In The Chemistry of Organic Silicon Compounds . Patai S, Rappoport Z. Wiley; Chichester: 1989. Chap. 10, 655
    • 1b Larson GL. The Chemistry of Organic Silicon Compounds . Patai S, Rappoport Z. Wiley; Chichester: 1989. Chap. 11, 763
    • 2a Chuit C, Corriu RJ. P, Reye C, Young JC. Chem. Rev. 1993; 93: 1371
    • 2b Tamao K, Hayashi T, Ito Y, Shiro M. J. Am. Chem. Soc. 1990; 112: 2422
    • 2c Tamao K, Hayashi T, Ito Y, Shiro M. Organometallics 1992; 11: 2099
    • 2d Damrauer R, Danahey SE. Organometallics 1986; 5: 1490
    • 2e Nakadaira Y, Ohara K, Sakurai H. J. Organomet. Chem. 1986; 309: 247
    • 3a Ahn D, Rolley PA. US 20050282959, 2005 ; Chem. Abstr. 2005, 144, 70584
    • 3b Takada T, Hattori T, Ikechi A. JP 2011033933, 2011 ; Chem. Abstr. 2011, 154, 272044f
  • 4 Marko OW, Steinmeyer RD, Rentsch S. US 4578494, 1986 ; Chem. Abstr. 1986, 105, 7050
  • 5 Voronkov MG, Chudesova LM. Russ. Chem. Bull. 1957; 6: 1440
  • 6 Grant DJ, Dixon DA. J. Phys. Chem. A 2009; 113: 3656
  • 7 Hong CM, Witt SD, Tang YN. J. Fluorine Chem. 1983; 23: 359
  • 8 Damrauer R, Simon RA, Kanner B. Organometallics 1988; 7: 1161
  • 9 Prakash GK. S, Wang Q, Li X, Olah GA. New J. Chem. 1990; 14: 791
  • 10 Bulkowski JE, Stacy R, Van Dyke CH. J. Organomet. Chem. 1976; 87: 137
  • 11 Finch MA, Marcus LH, Smirnoff C, Van Dyke CH, Viswanathan N. Synth. Inorg. Met.-Org. Chem. 1971; 103
  • 12 Anderson HH. J. Am. Chem. Soc. 1958; 80: 5083
  • 13 Yoshida JTsujishima H, Nakano K, Teramoto T, Nishiwaki K, Isoe S. Organometallics 1995; 14: 567
    • 14a Kunai A, Sakurai T, Toyoda E, Ishikawa M. Organometallics 1996; 15: 2478
    • 14b Kunai A, Ohshita J. J. Organomet. Chem. 2003; 686: 3
    • 15a Flood EA. J. Am. Chem. Soc. 1933; 55: 1735
    • 15b Pray BO, Sommer LH, Goldberg GM, Kerr GT, DiGregio PA, Whitmore FC. J. Am. Chem. Soc. 1948; 70: 433
    • 16a Marans NS, Sommer LH, Whitmore FC. J. Am. Chem. Soc. 1951; 73: 5127
    • 16b Eaborn C. J. Chem. Soc. 1952; 2846
    • 16c Bluestein BA. J. Am. Chem. Soc. 1948; 70: 3068
    • 16d Booth HS, Freedman ML. J. Am. Chem. Soc. 1950; 72: 2847
    • 16e Spialter L, Towers RS, Kant MM. Tetrahedron Lett. 1960; 1: 11
    • 17a Knoth WH, Lindsay RV. J. Org. Chem. 1958; 23: 1392
    • 17b Horner L, Mathias J. J. Organomet. Chem. 1985; 282: 155
  • 18 Müller R, Mross D. Z. Chem. 1971; 11: 382
    • 19a Farooq O. J. Chem. Soc., Perkin Trans. 1 1998; 661
    • 19b Farooq O. J. Fluorine Chem. 1997; 86: 189
  • 20 Booth HS, Suttle JF. J. Am. Chem. Soc. 1946; 68: 2658
  • 21 Hengge E, Schrank F. J. Organomet. Chem. 1986; 299: 1
  • 22 Wilkins CJ. J. Chem. Soc. 1951; 2726
  • 23 Tamao K, Yoshida J, Yamamoto H, Kakui T, Matsumoto H, Takahashi M, Kurita A, Murata M, Kumada M. Organometallics 1982; 1: 355
  • 24 Lickiss PD, Lucas R. J. Organomet. Chem. 1996; 510: 167
    • 25a Farooq O, Tiers GV. D. J. Org. Chem. 1994; 59: 2122
    • 25b Roesky HW, Herzog A, Keller K. Z. Naturforsch., B: J. Chem. Sci. 1994; 49: 981
    • 25c Marks TJ, Seyam AM. Inorg. Chem. 1974; 13: 1624
  • 26 Meerwein H. Org. Synth. 1966; 46: 113
  • 27 Jorapur YR, Mizoshita N, Maegawa Y, Nakagawa H, Hasegawa T, Tani T, Inagaki S, Shimada T. Chem. Lett. 2012; 41: 280
  • 28 Maegawa Y, Nagano T, Yabuno T, Nakagawa H, Shimada T. Tetrahedron 2007; 63: 11467
    • 29a Kira M, Hino T, Sakurai H. J. Am. Chem. Soc. 1992; 114: 6697
    • 29b Olah GA, Li X.-Y, Wang Q, Rasul G, Prakash GK. S. J. Am. Chem. Soc. 1995; 117: 8962
  • 30 Typical Procedure for the Synthesis of Fluorosilanes: A dry and nitrogen-flushed 10 mL screw-capped vial was charged with alkoxysilane (1, 1.0 mmol), MeCN (5.0 mL) followed by the addition of Me3OBF4 (147.9 mg, 1.0 mmol) or Et3OBF4 (189.9 mg, 1.0 mmol). The reaction mixture was stirred at 50 °C for 30 min and quenched by dropwise addition of H2O. It was then diluted with CH2Cl2; the organic layer was washed with brine, dried over anhyd MgSO4, and evaporated under reduced pressure. The crude mixture was purified by chromatography on silica gel (5% EtOAc–hexane as eluent) to give the corresponding fluorosilane as a colorless liquid.(4-Bromophenyl)di(prop-2-enyl)fluorosilane (2a): colorless liquid. 1H NMR (270 MHz, CDCl3): δ = 1.96–2.01 (m, 4 H), 4.97–5.06 (m, 4 H), 5.70–5.86 (m, 2 H), 7.44 (d, J = 8.1 Hz, 2 H), 7.56 (d, J = 8.1 Hz, 2 H). 13C NMR (68 MHz, CDCl3): δ = 21.0, 21.2, 116.3, 125.6, 130.8, 130.85, 131.2, 135.06, 135.09. 19F NMR (376 MHz, CDCl3): δ = –171.93. HRMS (FAB+): m/z [M – H]+ calcd for C12H13BrFSi: 282.9954; found: 282.9935.Fluoro[phenyldi(prop-2-enyl)]silane (2b): colorless liquid. 1H NMR (270 MHz, CDCl3): δ = 1.98–2.04 (m, 4 H), 4.97–5.06 (m, 2 H), 5.74–5.89 (m, 2 H), 7.38–7.50 (m, 3 H), 7.58–7.62 (m, 2 H). 13C NMR (68 MHz, CDCl3): δ = 21.1, 21.3, 115.9, 128.0, 130.6, 131.3, 133.5, 133.6. 19F NMR (470 MHz, CDCl3): δ = –172.82. HRMS (FAB+): m/z [M – H]+ calcd for C12H15FSi: 206.0927; found: 206.0921.Fluoro[diphenyl(prop-2-enyl)]silane (5): colorless liquid. 1H NMR (400 MHz, CDCl3): δ = 2.22–2.25 (m, 2 H), 4.95–5.04 (m, 2 H), 5.79–5.86 (m, 1 H), 7.38–7.47 (m, 6 H), 7.61–7.63 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ = 21.7, 21.8, 116.2, 128.0, 130.7, 131.2, 132.7, 132.8, 134.25, 134.27. 19F NMR (376 MHz, CDCl3): δ = –170.8. HRMS (EI+): m/z [M]+ calcd for C15H15FSi: 242.0927; found: 242.0927.Fluorotri(prop-2-enyl)silane (7): colorless liquid. 1H NMR (400 MHz, CDCl3): δ = 1.76–1.79 (m, 6 H), 4.97–5.02 (m, 6 H), 5.75–5.82 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 20.5, 20.7, 115.6, 131.4. 19F NMR (376 MHz, CDCl3): δ = –170.2. CAS registry no. 429-89-0
  • 31 Role of MeCN is currently unclear. For reports on the formation of N-methyl- and N-ethylnitrilium ions with MeCN in the presence of MR, see: Gordon J, Turrell G. J. Org. Chem. 1959; 24: 269
  • 32 For hypervalent silicon species, see: Tilgner IC, Fischer P, Bohnen FM, Rehage H, Maier WF. Microporous Mater. 1995; 5: 77