Synlett 2012; 23(7): 1064-1068
DOI: 10.1055/s-0031-1290757
letter
© Georg Thieme Verlag Stuttgart · New York

Meerwein’s Reagent Mediated, Significantly Enhanced Nucleophilic Fluorination on Alkoxysilanes

Yogesh R. Jorapur
a   Department of Chemical Engineering, Nara National College of Technology, 22 Yata-cho Yamatokoriyama, Nara, 639-1080, Japan
b   Core Research for Evolutional Science and Technology (CREST), JST Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan, Fax: +81(743)556154   Email: shimada@chem.nara-k.ac.jp
,
Toyoshi Shimada*
a   Department of Chemical Engineering, Nara National College of Technology, 22 Yata-cho Yamatokoriyama, Nara, 639-1080, Japan
b   Core Research for Evolutional Science and Technology (CREST), JST Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan, Fax: +81(743)556154   Email: shimada@chem.nara-k.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 24 January 2012

Accepted after revision: 14 February 2012

Publication Date:
05 April 2012 (online)


Abstract

We developed a new facile method to fluorosilanes from alkoxysilanes using Meerwein’s reagent. Our protocol afforded fluo­rosilanes in excellent yields in various organic solvents including acetonitrile under mild reaction conditions at room temperature. We also proposed a reaction mechanism with the probable silyloxonium intermediates.

Supporting Information

 
  • References and Notes

    • 3a Ahn D, Rolley PA. US 20050282959, 2005 ; Chem. Abstr. 2005, 144, 70584
    • 3b Takada T, Hattori T, Ikechi A. JP 2011033933, 2011 ; Chem. Abstr. 2011, 154, 272044f
  • 4 Marko OW, Steinmeyer RD, Rentsch S. US 4578494, 1986 ; Chem. Abstr. 1986, 105, 7050
  • 5 Voronkov MG, Chudesova LM. Russ. Chem. Bull. 1957; 6: 1440
  • 6 Grant DJ, Dixon DA. J. Phys. Chem. A 2009; 113: 3656
  • 7 Hong CM, Witt SD, Tang YN. J. Fluorine Chem. 1983; 23: 359
  • 8 Damrauer R, Simon RA, Kanner B. Organometallics 1988; 7: 1161
  • 9 Prakash GK. S, Wang Q, Li X, Olah GA. New J. Chem. 1990; 14: 791
  • 10 Bulkowski JE, Stacy R, Van Dyke CH. J. Organomet. Chem. 1976; 87: 137
  • 11 Finch MA, Marcus LH, Smirnoff C, Van Dyke CH, Viswanathan N. Synth. Inorg. Met.-Org. Chem. 1971; 103
  • 12 Anderson HH. J. Am. Chem. Soc. 1958; 80: 5083
  • 13 Yoshida JTsujishima H, Nakano K, Teramoto T, Nishiwaki K, Isoe S. Organometallics 1995; 14: 567
  • 18 Müller R, Mross D. Z. Chem. 1971; 11: 382
  • 20 Booth HS, Suttle JF. J. Am. Chem. Soc. 1946; 68: 2658
  • 21 Hengge E, Schrank F. J. Organomet. Chem. 1986; 299: 1
  • 22 Wilkins CJ. J. Chem. Soc. 1951; 2726
  • 23 Tamao K, Yoshida J, Yamamoto H, Kakui T, Matsumoto H, Takahashi M, Kurita A, Murata M, Kumada M. Organometallics 1982; 1: 355
  • 24 Lickiss PD, Lucas R. J. Organomet. Chem. 1996; 510: 167
  • 26 Meerwein H. Org. Synth. 1966; 46: 113
  • 27 Jorapur YR, Mizoshita N, Maegawa Y, Nakagawa H, Hasegawa T, Tani T, Inagaki S, Shimada T. Chem. Lett. 2012; 41: 280
  • 28 Maegawa Y, Nagano T, Yabuno T, Nakagawa H, Shimada T. Tetrahedron 2007; 63: 11467
  • 30 Typical Procedure for the Synthesis of Fluorosilanes: A dry and nitrogen-flushed 10 mL screw-capped vial was charged with alkoxysilane (1, 1.0 mmol), MeCN (5.0 mL) followed by the addition of Me3OBF4 (147.9 mg, 1.0 mmol) or Et3OBF4 (189.9 mg, 1.0 mmol). The reaction mixture was stirred at 50 °C for 30 min and quenched by dropwise addition of H2O. It was then diluted with CH2Cl2; the organic layer was washed with brine, dried over anhyd MgSO4, and evaporated under reduced pressure. The crude mixture was purified by chromatography on silica gel (5% EtOAc–hexane as eluent) to give the corresponding fluorosilane as a colorless liquid.(4-Bromophenyl)di(prop-2-enyl)fluorosilane (2a): colorless liquid. 1H NMR (270 MHz, CDCl3): δ = 1.96–2.01 (m, 4 H), 4.97–5.06 (m, 4 H), 5.70–5.86 (m, 2 H), 7.44 (d, J = 8.1 Hz, 2 H), 7.56 (d, J = 8.1 Hz, 2 H). 13C NMR (68 MHz, CDCl3): δ = 21.0, 21.2, 116.3, 125.6, 130.8, 130.85, 131.2, 135.06, 135.09. 19F NMR (376 MHz, CDCl3): δ = –171.93. HRMS (FAB+): m/z [M – H]+ calcd for C12H13BrFSi: 282.9954; found: 282.9935.Fluoro[phenyldi(prop-2-enyl)]silane (2b): colorless liquid. 1H NMR (270 MHz, CDCl3): δ = 1.98–2.04 (m, 4 H), 4.97–5.06 (m, 2 H), 5.74–5.89 (m, 2 H), 7.38–7.50 (m, 3 H), 7.58–7.62 (m, 2 H). 13C NMR (68 MHz, CDCl3): δ = 21.1, 21.3, 115.9, 128.0, 130.6, 131.3, 133.5, 133.6. 19F NMR (470 MHz, CDCl3): δ = –172.82. HRMS (FAB+): m/z [M – H]+ calcd for C12H15FSi: 206.0927; found: 206.0921.Fluoro[diphenyl(prop-2-enyl)]silane (5): colorless liquid. 1H NMR (400 MHz, CDCl3): δ = 2.22–2.25 (m, 2 H), 4.95–5.04 (m, 2 H), 5.79–5.86 (m, 1 H), 7.38–7.47 (m, 6 H), 7.61–7.63 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ = 21.7, 21.8, 116.2, 128.0, 130.7, 131.2, 132.7, 132.8, 134.25, 134.27. 19F NMR (376 MHz, CDCl3): δ = –170.8. HRMS (EI+): m/z [M]+ calcd for C15H15FSi: 242.0927; found: 242.0927.Fluorotri(prop-2-enyl)silane (7): colorless liquid. 1H NMR (400 MHz, CDCl3): δ = 1.76–1.79 (m, 6 H), 4.97–5.02 (m, 6 H), 5.75–5.82 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 20.5, 20.7, 115.6, 131.4. 19F NMR (376 MHz, CDCl3): δ = –170.2. CAS registry no. 429-89-0
  • 31 Role of MeCN is currently unclear. For reports on the formation of N-methyl- and N-ethylnitrilium ions with MeCN in the presence of MR, see: Gordon J, Turrell G. J. Org. Chem. 1959; 24: 269
  • 32 For hypervalent silicon species, see: Tilgner IC, Fischer P, Bohnen FM, Rehage H, Maier WF. Microporous Mater. 1995; 5: 77