Synlett 2012(7): 1085-1089  
DOI: 10.1055/s-0031-1290656
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

A Transition-Metal-Free Cross-Coupling Reaction of Allylic Bromides with Aryl- and Vinylboronic Acids

Mitsuhiro Ueda*, Kota Nishimura, Ryo Kashima, Ilhyong Ryu*
Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
Fax: +81(72)2549695; e-Mail: ryu@c.s.osakafu-u.ac.jp; e-Mail: ueda@c.s.osakafu-u.ac.jp;
Weitere Informationen

Publikationsverlauf

Received 25 December 2011
Publikationsdatum:
28. März 2012 (online)

Abstract

A cross-coupling reaction between aryl- and vinylboronic acids and various allylic bromides proceeded without the use of a transition-metal catalyst to give the corresponding allylated products in moderate to good yields. The use of an inorganic base (KF or Cs2CO3) and a small amount of water is crucial in obtaining good performance in the present transition-metal-free reaction.

    References and Notes

  • 1a Moreno-Mañas M. Pajuelo F. Pleixats R. J. Org. Chem.  1995,  60:  2396 
  • 1b Cortes J. Moreno-Mañas M. Pleixats R. Eur. J. Org. Chem.  2000,  239 
  • 1c Moreno-Mañas M. Pleixats R. Villarroya S. Organometallics  2001,  20:  4524 
  • 1d Botella L. Nájera C. J. Organomet. Chem.  2002,  663:  46 
  • 1e Alonso DA. Nájera C. Pacheco MC. J. Org. Chem.  2002,  67:  5588 
  • 1f Llobet A. Masllorens E. Rodríguez M. Roglans A. Benet-Buchholz J. Eur. J. Inorg. Chem.  2004,  1601 
  • 1g Nájera C. Gil-Moltó J. Karlström S. Adv. Synth. Catal.  2004,  346:  1798 
  • 1h Singh R. Viciu MS. Kramareva N. Navarro O. Nolan SP. Org. Lett.  2005,  7:  1829 
  • 1i Kabalka GW. Dadush E. Al-Masum M. Tetrahedron Lett.  2006,  47:  7459 
  • 1j Srimani D. Sarkar A. Tetrahedron Lett.  2008,  49:  6304 
  • 1k Gerbino DC. Mandolesi SD. Schmalz H.-G. Podestá JC. Eur. J. Org. Chem.  2009,  3964 
  • 1l Alacid E. Nájera C. J. Organomet. Chem.  2009,  694:  1658 
  • 1m Crociani B. Antonaroli S. Burattini M. Paoli P. Rossi P. Dalton. Trans.  2010,  39:  3665 
  • 1n Ghosh R. Adarsh NN. Sarkar A. J. Org. Chem.  2010,  75:  5320 
  • 1o Civicos JF. Alonso DA. Nájera C. Adv. Synth. Catal.  2011,  353:  1683 
  • 2a Uozumi Y. Danjo H. Hayashi T. J. Org. Chem.  1999,  64:  3384 
  • 2b Badone D. Baron M. Cardamone R. Ielmini A. Guzzi U. J. Organomet. Chem.  1997,  62:  7170 
  • 2c Chen H. Deng M.-Z. J. Organomet. Chem.  2000,  603:  189 
  • 2d Bouyssi D. Gerusz V. Balme G. Eur. J. Org. Chem.  2002,  2445 
  • 2e Kabalka GW. Al-Masum M. Org. Lett.  2006,  8:  11 
  • 2f Mino T. Kajiwara K. Shirae Y. Sakamoto M. Fujita T. Synlett  2008,  2711 
  • 2g Ohmiya H. Makida Y. Tanaka T. Sawamura M. J. Am. Chem. Soc.  2008,  130:  17276 
  • 2h Yamada YMA. Watanabe T. Torii K. Uozumi Y. Chem. Commun.  2009,  5594 
  • 2i Maslak V. Tokic-Vujosevic Z. Saicic RN. Tetrahedron Lett.  2009,  50:  1858 
  • 2j Nishikata T. Lipshutz BH. J. Am. Chem. Soc.  2009,  131:  12103 
  • 2k Ohmiya H. Makida Y. Li D. Tanabe M. Sawamura M. J. Am. Chem. Soc.  2010,  132:  879 
  • 2l Pigge FC. Synthesis  2010,  1745 
  • 2m Ohmiya H. Yokokawa N. Sawamura M. Org. Lett.  2010,  12:  2438 
  • 2n Li D. Tanaka T. Ohmiya H. Sawamura M. Org. Lett.  2010,  12:  3344 
  • 2o Makida Y. Ohmiya H. Sawamura M. Chem. Asian. J.  2011,  6:  410 
  • 3a Tsukamoto H. Sato M. Kondo Y. Chem. Commun.  2004,  1200 
  • 3b Kayaki Y. Koda T. Ikariya T. Eur. J. Org. Chem.  2004,  4989 
  • 3c Tsukamoto H. Uchiyama T. Suzuki T. Kondo Y. Org. Biomol. Chem.  2008,  6:  3005 
  • 3d Kantam ML. Kumar KBS. Sreedhar B. J. Org. Chem.  2008,  73:  320 
  • Rh- and Ni-catalyzed cross-coupling reactions of allylic acetates, allylic amines, and allylic alcohols with arylboronic acids also have been reported, but, in these reactions, the range of applicable substrates was very narrow.
  • 4a Rh: Kabalka GW. Dong G. Venkataiah B. Org. Lett.  2003,  5:  893 
  • Ni:
  • 4b Trost BM. Spagnol MD. J. Chem. Soc., Perkin Trans. 1  1995,  2083 
  • 4c Chung K.-G. Miyake Y. Uemura S. J. Chem. Soc., Perkin Trans. 1  2000,  15 
  • 5a Kabalka GW. Yao M.-L. Borella S. Wu Z. Chem. Commun.  2005,  2492 
  • 5b Kabalka GW. Yao M.-L. Borella Z. Wu Z. Ju J.-H. Quick T. J. Org. Chem.  2008,  73:  2668 
  • 6a Leadbeater NE. Marco M. Angew. Chem. Int. Ed.  2003,  42:  1407 
  • 6b Leadbeater NE. Marco M. J. Org. Chem.  2003,  68:  5660 
  • 6c Yan J. Zhu M. Zhou Z. Eur. J. Org. Chem.  2006,  2060 
  • 7 Shirakawa E. Hayashi Y. Itoh K. Watabe R. Uchiyama N. Konagaya W. Masui S. Hayashi T. Angew. Chem. Int. Ed.  2012,  51:  218 
  • 8 Scrivanti A. Beghetto V. Bertoldini M. Matteoli U. Eur. J. Org. Chem.  2011,  264 
  • 12a Yamada YMA. Takeda K. Takahashi H. Ikegami S. J. Org. Chem.  2003,  68:  7733 
  • 12b Alacid E. Nájera C. Org. Lett.  2008,  10:  5011 
  • 13a Huang X.-T. Chen Q.-Y. J. Org. Chem.  2001,  66:  4651 
  • 13b Loy RN. Sanford MS. Org. Lett.  2011,  13:  2548 
  • 14a Petasis NA. Zavialov IA. Tetrahedron Lett.  1996,  37:  567 
  • 14b Salzbrunn S. Simon J. Prakash GKS. Petasis NA. Olah GA. Synlett  2000,  1485 
  • 14c Prakash GKS. Panja C. Mathew T. Surampudi V. Petasis NA. Olah GA. Org. Lett.  2004,  6:  2205 
  • 14d Lee S. MacMillan DWC. J. Am. Chem. Soc.  2007,  129:  15438 
  • 14e Stefani HA. Cella R. Vieira AS. Tetrahedron  2007,  63:  3623 
  • 14f Vieira AS. Ferreira FP. Fiorante PF. Guadagnin RC. Stefani HA. Tetrahedron  2008,  64:  3306 
  • 14g Vieira AS. Fiorante PF. Hough TLS. Ferreira FP. Ludtke DS. Stefani HA. Org. Lett.  2008,  10:  5215 
  • 14h Mitchell TA. Bode JW. J. Am. Chem. Soc.  2009,  131:  18057 
  • 14i Zeng J. Vedachalam S. Xiang S. Liu X.-W. Org. Lett.  2011,  13:  42 
  • 14j Molander GA. Cavalcanti LN. J. Org. Chem.  2011,  76:  7195 
  • 14k Larouche-Gauthier R. Elford TG. Aggarwal V. J. Am. Chem. Soc.  2011,  133:  16794 
9

We also tested the reactivity of other organoboronic acid derivatives. Potassium 4-methoxyphenyltrifluoroborate was able to react with 1a, but the yield was low (25%). Pinacol ester of 1a did not work as a substrate.

10

The use of Cs2CO3 in the absence of H2O gave 3aa in a moderate yield (60%).

11

In the general conditions, phenylboronic acid (1h) gave the cross-coupling product 3ha in a poor yield (7% yield), and the reaction of 4-acetylphenylboronic acid with 2a did not give the corresponding product.

15

Typical Procedure for a Transition-Metal-Free Cross-Coupling Reaction of Allylic Bromides with Aryl- and Vinylboronic Acids: A mixture of 4-benzyloxyphenyl boronic acid (1d; 0.65 mmol, 1.3 equiv), cinnamyl bromide (2a; 0.5 mmol), and Cs2CO3 (0.75 mmol, 1.5 equiv) in CH2Cl2-H2O (1.65 mL, 10:1) was stirred at 60 ˚C for 18 h. After the reaction was completed, the reaction mixture was treated with aq 1 N HCl, extracted with CH2Cl2 and dried over MgSO4. The organic layer was concentrated and the resulting residue was purified by column chromatography on silica gel (hexane-EtOAc, 100:1) to give (E)-3-(4-benzyloxyphenyl)-1-phenyl-1-propene (3da) as a white solid in 91% yield (136.6 mg, 0.455 mmol); mp 44-48 ˚C. ¹H NMR (500 MHz, CDCl3): δ = 3.49 (d, J = 6.9 Hz, 2 H), 5.05 (s, 2 H), 6.34 (dt, J = 15.6, 6.9 Hz, 1 H), 6.43 (d, J = 15.6 Hz, 1 H), 6.93 (d, J = 8.7 Hz, 2 H), 7.16 (d, J = 8.7 Hz, 2 H), 7.20 (t, J = 7.4 Hz, 1 H), 7.27-7.39 (m, 7 H), 7.43 (d, J = 6.9 Hz, 2 H). ¹³C NMR (125 MHz, CDCl3): δ = 38.6, 70.2, 115.0, 126.2, 127.2, 127.6, 128.0, 128.6, 128.7, 129.7 (two peaks overlap), 130.9, 133.0, 137.3, 137.6, 157.4. IR (neat): 3031, 1454, 1231 cm. HRMS (EI): m/z [M]+ calcd for C22H20O: 300.1514; found: 300.1512.