RSS-Feed abonnieren
DOI: 10.1055/s-0031-1290614
A Concise Synthetic Approach to (+)-Valienamine Starting from Garner’s Aldehyde
Publikationsverlauf
Publikationsdatum:
15. März 2012 (online)

Abstract
A synthesis of (+)-valienamine was achieved starting from Garner’s aldehyde in ten steps and 23% overall yield. A unique feature of the synthetic route is that an acyclic precursor was constructed, using diastereoselective antireductive coupling reaction of alkyne and Garner’s aldehyde as the key step, which was then cyclized in an intramolecular aldol reaction to form the valienamine skeleton.
Key words
(+)-valienamine - Garner’s aldehyde - diastereoselective - hydrozirconation-transmetalation - intramolecular aldol reaction
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- 1 Those authors contributed equally
Reference Ris Wihthout Link
- 2
Kameda Y.Asano N.Yoshikawa M.Matsui K. J. Antibiot. 1982, 35: 1624Reference Ris Wihthout Link - 3
Kameda Y.Horii S. J. Chem. Soc., Chem. Commun. 1972, 746Reference Ris Wihthout Link - 4a
Kameda Y.Asano N.Teranishi M.Matsui K. J. Antibiot. 1980, 33: 1573Reference Ris Wihthout Link - 4b
Kameda Y.Asano N.Teranishi M.Yoshikawa M.Matsui K. J. Antibiot. 1981, 34: 1237Reference Ris Wihthout Link - 4c
Asano N.Takeuchi M.Ninomiya K.Kameda Y.Matsui K. J. Antibiot. 1984, 37: 859Reference Ris Wihthout Link - 5a
Ogawa S.Miyamoto Y.Nakajima A. Chem. Lett. 1989, 725Reference Ris Wihthout Link - 5b
Ogawa S.Nakajima A.Miyamoto Y. J. Chem. Soc., Perkin Trans. 1 1991, 3287Reference Ris Wihthout Link - 6a
Chen X.Fan Y.Zheng Y.Shen Y. Chem. Rev. 2003, 103: 1955Reference Ris Wihthout Link - 6b
Mahmud T. Nat. Prod. Rep. 2003, 20: 137Reference Ris Wihthout Link - 7
Paulsen H.Heiker FR. Angew. Chem., Int. Ed. Engl. 1980, 19: 904Reference Ris Wihthout Link - 8a
Chang Y.-K.Lee B.-Y.Kim D.-J.Lee G.-S.Jeon H.-B.Kim K.-S. J. Org. Chem. 2005, 70: 3299Reference Ris Wihthout Link - 8b
Fukase H.Horii S. J. Org. Chem. 1992, 57: 3651Reference Ris Wihthout Link - 8c
Yoshikawa M.Cha BC.Okaichi Y.Takinami Y.Yokokawa Y.Kitagawa I. Chem. Pharm. Bull. 1988, 36: 4236Reference Ris Wihthout Link - 8d
Nicotra F.Panza L.Ronchetti F.Russo G. Gazz. Chim. Ital. 1989, 119: 577Reference Ris Wihthout Link - 8e
Park TK.Danishefsky SJ. Tetrahedron Lett. 1994, 35: 2667Reference Ris Wihthout Link - 8f
Vasella A.Kapferer P.Sarabia F. Helv. Chim. Acta 1999, 82: 645Reference Ris Wihthout Link - 8g
Tatsuta K.Mukai H.Takahashi M.
J. Antibiot. 2000, 53: 430Reference Ris Wihthout Link - 8h
Schmidt RR.Kohn A. Angew. Chem., Int. Ed. Engl. 1987, 26: 482Reference Ris Wihthout Link - 9a
Kok SHL.Lee C.-C.Shing TKM. J. Org. Chem. 2001, 66: 7184Reference Ris Wihthout Link - 9b
Shing TKM.Li T.-Y.Kok SHL. J. Org. Chem. 1999, 64: 1941Reference Ris Wihthout Link - 9c
Shing TKM.Kwong CSK.Cheung AWC.Kok SH.-L.Yu Z.Li J.Cheng CHK. J. Am. Chem. Soc. 2004, 126: 15990Reference Ris Wihthout Link - 10a
Ogawa S.Shibata Y.Nose T.Suami T. Bull. Chem. Soc. Jpn. 1985, 58: 3387Reference Ris Wihthout Link - 10b
Knapp S.Naughton ABJ.Dhar TGM. Tetrahedron Lett. 1992, 33: 1025Reference Ris Wihthout Link - 10c
Trost BM.Chupak LS.Lubbers T. J. Am. Chem. Soc. 1998, 120: 1732Reference Ris Wihthout Link - 10d
Chang YK.Lo HJ.Yan TH. Org. Lett. 2009, 11: 4278Reference Ris Wihthout Link - 11
Garner P. Tetrahedron Lett. 1984, 25: 5855Reference Ris Wihthout Link - 12
Cram DJ.Kopecky KR. J. Am. Chem. Soc. 1959, 81: 2748Reference Ris Wihthout Link - 13a
Cherest M.Felkin H.Prudent N. Tetrahedron Lett. 1968, 9: 2119Reference Ris Wihthout Link - 13b
Cherest M.Felkin H. Tetrahedron Lett. 1968, 9: 2205Reference Ris Wihthout Link - 13c
Anh NT.Eisenstein OE. Nouv. J. Chim. 1977, 1: 61Reference Ris Wihthout Link - 13d
Anh NT. Top. Curr. Chem. 1980, 88: 145Reference Ris Wihthout Link - 14a
Herold P. Helv. Chim. Acta 1988, 71: 354Reference Ris Wihthout Link - 14b
Garner P.Park JM.Malecki E. J. Org. Chem. 1988, 53: 4395Reference Ris Wihthout Link - 14c
Radunz H.-E.Devant RM.Eiermann V. Liebigs Ann. Chem. 1988, 1103Reference Ris Wihthout Link - 15
Wipf P.Xu W. Tetrahedron Lett. 1994, 35: 5197Reference Ris Wihthout Link - 16
Murakami T.Furusawa K. Tetrahedron 2002, 58: 9257Reference Ris Wihthout Link - 18
Donohoe TJ.Newcombe NJ.Waring MJ. Tetrahedron Lett. 1999, 40: 6881Reference Ris Wihthout Link - 19
Wei CQ.Jiang XR.Ding Y. Tetrahedron 1998, 54: 12623Reference Ris Wihthout Link - 20a
Corey EJ.Danheiser RL.Chandrasekaran S.Siret P.Keck GE.Gras J.-L. J. Am. Chem. Soc. 1978, 100: 8031Reference Ris Wihthout Link - 20b
Caton MPL.Stuttle KAJ.Tuffin DP.Ansell MF. Eur. J. Med. Chem. 2000, 1099Reference Ris Wihthout Link - 20c
Wu Y.Zhang H.Zhao Y.Zhao J.Chen J.Li L. Org. Lett. 2007, 9: 1199Reference Ris Wihthout Link
References and Notes
Procedure for
the Synthesis of 6
To an ice-cooled stirred suspension
of Cp2Zr(H)Cl (5.05 g, 19.6 mmol) in THF (50 mL) under
argon protection was added tert-butyl(but-3-ynyloxy)dimethylsilane
(3.61 g, 19.6 mmol), the mixture was stirred at r.t. for 1 h, and
then cooled to 0 ˚C. To the resulting orange solution was
added aldehyde 7 (2.25g, 9.8 mmol) in THF
(35 mL) followed by ZnBr2 (552 mg, 2.45 mmol, dried under
vacuum for 1 h before use), and the mixture was stirred for 24 h
at r.t. The mixture was diluted with EtOAc (100 mL) and aq potassium
sodium
(+)-tartrate (5.7 g, 19.6 mmol), and stirred
for 10 min. The resulting suspension was filtered off and washed
thoroughly with EtOAc (100 mL). The combined filtrate was transferred into
a separatory funnel and successively washed with H2O and
brine. The aqueous phase was extracted with EtOAc (2 × 200
mL), and the combined organic layers were dried over anhyd Na2SO4.
The mixture was concentrated and purified by silica gel chromatography
to afford 6 (3.625 g, 84%) as
a colorless oil: [α] D
²0 -27.0
(c 1.2, CHCl3). ¹H
NMR (300 MHz, CDCl3): δ = 5.72 (m,
1 H), 5.49 (dd, J = 15.0,
6.0 Hz, 1 H), 4.02 (m, 4 H), 3.61 (t, J = 6.0,
2 H), 2.26 (m, 2 H), 1.48 (s, 15 H), 0.86 (s, 9 H), 0.01 (s, 6 H). ¹³C
NMR (100 MHz, CDCl3): δ = 153.8, 130.6,
128.7, 94.1, 80.7, 73.6, 64.7, 62.7, 61.9, 35.9, 28.2, 28.2, 28.2,
26.3, 25.8, 25.8, 25.8, 24.5, 18.1, -5.4, -5.4.
IR (film): 3454, 2931, 2858, 1699, 1473, 1387, 1255, 1174, 1097,
837, 775 cm-¹. MS (EI): m/z (%) = 415
(0.04)[M+], 100 (64.29), 57
(100.00). HRMS (EI): m/z calcd
for C21H41NSiO5 [M+]:
415.2754; found: 415.2765.
Procedure for
the Synthesis of 11
To a suspension of 3 (40
mg, 0.09 mmol) and CeCl3˙7H2O (52
mg, 0.135 mmol) in MeOH (3 mL) was added NaBH4 (4 mg,
0.1 mmol) at 0 ˚C. The mixture was stirred for 15 min, and
the solvent was removed under reduced pressure. Then, H2O
(3 mL) was added to the residue, which was then extracted with EtOAc
(3 × 6 mL). The organic layer was washed
with H2O (3 mL) and brine (3 mL), dried (Na2SO4), filtered,
and and the solvent was removed under reduced pressure to give the
colorless oil, which was directly dissolved in CH2Cl2 (4
mL), and TFA (2 mL) was added. The mixture was stirred for 4 h at
0 ˚C. Then, the solvent was removed in vacuum to give the
crude product 1, which was dissolved in
pyridine (2 mL) and Ac2O (1 mL) containing a catalytic
amount of DMAP. The mixture was stirred at r.t. for 24 h. The reaction
mixture was diluted with EtOAc (10 mL) and washed with sat. NaHCO3 (10
mL). The aqueous layer was extracted with EtOAc (2 × 20
mL). The combined organic extracts were washed with brine (10 mL),
dried over Na2SO4, and filtered. Concentration
of the filtrate followed by chromatography gave pentaacetate 11 (23 mg, 68% over 3 steps) as
a white solid; mp 91-93 ˚C; [α]D
²0 +20.0
(c 0.075, CHCl3). ¹H
NMR (400 MHz, CDCl3): δ = 2.02 (s,
6 H), 2.06 (s, 3 H), 2.07 (s, 6 H), 4.39 and 4.64 (ABq, J = 13.2 Hz,
2 H), 5.02-5.11 (m, 2 H), 5.36 (br d, J = 6.8
Hz, 1 H), 5.45 (dd, J = 10.0,
6.4 Hz, 1 H), 5.70 (br d, J = 8.4
Hz, 1 H), 5.89 (dd, J = 5.2,
1.2 Hz, 1 H). ¹³C NMR (125 MHz, CDCl3): δ = 20.7, 20.8,
20.8, 20.8, 23.3, 44.9, 62.9, 68.5, 69.0, 71.2, 126.1, 134.3, 169.9,
170.0, 170.2, 170.3, 170.4. IR (film): 3363, 3269, 2924, 2850, 1743,
1649, 1556, 1469, 1371, 1223, 1024 cm-¹.
MS (EI): m/z (%) = 385
(0.67) [M+], 326 (100.00),
223 (57.20), 164 (68.60). HRMS (EI): m/z calcd
for C17H23NO9 [M+]:
385.1373; found: 385.1370.