Synlett 2012(5): 741-746  
DOI: 10.1055/s-0031-1290358
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

2-(Diphenylphosphino)benzoyl-Substituted Calix[4]arene: Efficient Organocatalyst in Aza-Morita-Baylis-Hillman Reaction of N-Sulfonated Imines with Methyl Vinyl Ketone

Yanyan Shen, Qian Tang, Chenchen Zhang, Weihui Zhong*
Key Laboratory of Pharmaceutical Engineering of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
Fax: +86(571)88871087; e-Mail: weihuizhong@zjut.edu.cn;
Weitere Informationen

Publikationsverlauf

Received 16 October 2011
Publikationsdatum:
24. Februar 2012 (online)

Abstract

A novel bifunctional organocatalyst 5,11,17,23-tetra­butyl-25-[2-(diphenylphosphino)benzoate]-26,27,28-trihydroxycalix-[4]arene (LB3) was synthesized and applied to promote the aza-Morita-Baylis-Hillman (aza-MBH) reaction of N-sulfonated im­ines with methyl vinyl ketone. It was found that in the presence of acidic additives the reaction rate could be accelerated to give aza-MBH adducts in good to excellent yields. Compared to our previous phosphine-containing calix[4]arene LB1, the novel catalyst was more effective.

    References and Notes

  • 1a Perlmutter P. Teo CC. Tetrahedron Lett.  1984,  25:  5951 
  • 1b Ciganek E. Org. React. (N. Y.)  1997,  51:  201 
  • 1c Basavaiah D. Rao PD. Hyma RS. Tetrahedron  1996,  52:  8001 
  • 1d Basavaiah D. Rao AJ. Satyanarayana T. Chem. Rev.  2003,  103:  811 
  • 1e Basavaiah D. Rao KV. Reddy RJ. Chem. Soc. Rev.  2007,  36:  1581 
  • 1f Declerck V. Martinez J. Lamaty F. Chem. Rev.  2009,  109:  1 
  • 2a Drewes SE. Ross GHP. Tetrahedron  1988,  44:  4653 
  • 2b Trost BM. Science  1991,  254:  1471 
  • 2c Trost BM. Acc. Chem. Res.  2002,  35:  695 
  • 2d Basavaiah D. Reddy BS. Badsara SS. Chem. Rev.  2010,  110:  5447 
  • 3a Shi M. Xu YM. Angew. Chem. Int. Ed.  2002,  41:  4507 
  • 3b Shi M. Chen LH. Chem. Commun.  2003,  1310 
  • 3c Kawahara S. Nakano A. Esumi T. Iwabuchi Y. Hatakeyama S. Org. Lett.  2003,  5:  3103 
  • 3d Balan D. Adolfsson H. Tetrahedron Lett.  2003,  44:  2521 
  • 3e Masson G. Housseman C. Zhu J. Angew. Chem. Int. Ed.  2007,  46:  4614 
  • 3f Abermil N. Masson G. Zhu J. J. Am. Chem. Soc.  2008,  130:  12596 
  • 3g Meng X. Huang Y. Chen R. Chem. Eur. J.  2008,  14:  6852 
  • 3h Liu YH. Shi M. Adv. Synth. Catal.  2008,  350:  122 
  • 4a Iwabuchi Y. Nakatani M. Yodoyama N. Hatakeyama S. J. Am. Chem. Soc.  1999,  121:  10219 
  • 4b Nakano A. Ushiyama M. Iwabuchi Y. Hatakeyama S. Adv. Synth. Catal.  2005,  347:  1790 
  • 4c Shi M. Xu YM. Shi YL. Chem. Eur. J.  2005,  11:  1794 
  • 4d Nakano A. Takahashi K. Ishihara J. Hatakeyama S. Org. Lett.  2006,  8:  5357 
  • 4e McDougal NT. Schaus SE. J. Am. Chem. Soc.  2003,  125:  12094 
  • 4f Matsui K. Takizawa S. Sasai H. Synlett  2006,  761 
  • 4g Liu YH. Chen LH. Shi M. Adv. Synth. Catal.  2006,  348:  973 
  • 4h Jiang YQ. Shi YL. Shi M. J. Am. Chem. Soc.  2008,  130:  7202 
  • 4i Utsumi N. Zhang H. Tanaka F. Barbas CF. Angew. Chem. Int. Ed.  2007,  46:  1878 
  • 4j Sohtome Y. Tanatani A. Hashimoto Y. Nagasawa K. Tetrahedron Lett.  2004,  45:  5589 
  • 4k Berkessel A. Roland K. Neudörfl JM. Org. Lett.  2006,  8:  4195 
  • 4l Shi M. Liu XG. Org. Lett.  2008,  10:  1043 
  • 4m Wang J. Yu X. Zu L. Wang W. Org. Lett.  2005,  7:  4293 
  • 4n Shi YL. Shi M. Adv. Synth. Catal.  2007,  349:  2129 
  • 4o Yuan K. Zhang L. Song HL. Hu YJ. Wu XY. Tetrahedron Lett.  2008,  49:  6262 
  • 5a Kuhn P. Jeunesse C. Matt D. Harrowfield J. Ricard L. Dalton Trans.  2006,  28:  3454 
  • 5b Chawla HM. Singh SP. Tetrahedron  2008,  64:  741 
  • 5c Tashev E. Tosheva T. Shenkov S. Chauvin AS. Lachkova V. Petrova R. Scopelliti R. Varbanov S. Supramol. Chem.  2007,  19:  447 
  • 6 Zhong WH. Zheng YM. Zhou JD. Shen YY. Synlett  2010,  3057 
  • 7a Auge J. Lubin N. Lubineau A. Tetrahedron Lett.  1994,  35:  7947 
  • 7b Yamada YMA. Ikegami S. Tetrahedron Lett.  2000,  41:  2165 
  • 7c Yu C. Liu B. Hu L. J. Org. Chem.  2001,  66:  5413 
  • 7d Cai J. Zhou Z. Zhao G. Tang C. Org. Lett.  2002,  4:  4723 
  • 7e Aggarwal VK. Dean DK. Mereu A. Williams R. J. Org. Chem.  2002,  67:  510 
  • 7f Garnier GM. Liu F. Org. Biomol. Chem.  2009,  7:  1272 
  • 8a Buskens P. Klankermayer J. Leitner W. J. Am. Chem. Soc.  2005,  127:  16762 
  • 8b Matsui K. Takizawa S. Sasai H. J. Am. Chem. Soc.  2005,  127:  3680 
  • 8c Shi M. Chen LH. Li CQ. J. Am. Chem. Soc.  2005,  127:  3790 
  • 8d Matsui K. Tanaka K. Horii A. Takizawa S. Sasai H. Tetrahedron: Asymmetry  2006,  17:  578 
  • 8e Garnier JM. Anstiss C. Liu F. Adv. Synth. Catal.  2009,  351:  331 
  • 8f Takizawa S. Inoue N. Hirata S. Sasai H. Angew. Chem. Int. Ed.  2010,  49:  9725 
  • 8g Wei Y. Shi M. Acc. Chem. Res.  2010,  43:  1005 
  • 8h Zhong F. Wang Y. Han X. Huang K. Lu Y. Org. Lett.  2011,  13:  1310 
9

Typical Procedure for the Preparation of LB3: A suspension of para-tert-butylcalix[4]arene (1.30 g, 2.0 mmol) in toluene (45 mL) was cooled to 0 ˚C. Then 2-(diphenylphosphino)benzoic acid (0.92 g, 3.0 mmol), dicyclohexylcarbodiimide (DCC, 0.699 g, 3.4 mmol) and 4-(N,N-dimethylamino)pyridine (DMAP; 0.041 g, 0.34 mmol) were added. After stirring at 60 ˚C for 12 h, the suspension was filtrated and extracted with CH2Cl2 (100 mL) and then washed with H2O (2 × 50 mL). The organic layer was dried with anhyd Na2SO4 and evaporated to afford a white solid that was purified by flash chromatography (EtOAc-PE, 1:30) to afford LB3; yield 60%; mp 181.0-182.1 ˚C. ¹H NMR (400 MHz, CDCl3): δ = 0.88 (s, 15 H, Me), 1.08 (s, 15 H, Me), 1.25 (s, 6 H, Me), 3.72 (m, 8 H, CH2), 6.10 (br, 1 H, OH), 6.49 (br, 2 H, OH), 6.68 (s, 2 H, ArH), 6.88 (s, 1 H, ArH), 7.01 (s, 1 H, ArH), 7.08 (s, 2 H, ArH), 7.17-7.23 (m, 6 H, ArH), 7.29 (t, J = 5.6 Hz, 9 H, ArH), 7.66 (s, 1 H, ArH). ¹³C NMR (100 MHz, CDCl3): δ = 162.1, 148.5, 148.1, 144.0, 143.1, 140.9, 140.6, 138.0, 137.9, 137.6, 137.5, 134.1 (2 × C), 133.9, 133.8, 133.5, 133.4, 132.9 (2 × C), 131.9 (2 × C), 131.6 (2 × C), 131.0, 130.8, 128.4 (2 × C), 128.3 (3 × C), 128.2 (4 × C), 126.8 (2 × C), 126.1 (2 × C), 125.9, 125.7, 125.3, 124.9, 124.8, 34.0, 33.9, 31.6 (9 × C), 31.3 (2 × C), 31.2 (2 × C), 31.1 (4 × C), 29.8. MS (ESI): m/z = 936.6 [M - 1]-. HRMS (ESI): m/z [M - 1]- calcd for C63H69O5P: 936.4883; found: 935.4756.

10

Typical Procedure for the Aza-Morita-Baylis-Hillman Reaction of N-Sulfonated Imines 1 with MVK in the Presence of LB3 (10 mol%): To N-(2-fluorobenzylidene)-4-methylbenzenesulfonamide (1a; 0.259 g, 1.0 mmol), LB3 (0.094 g, 0.10 mmol) and PhCO2H (0.012 g, 0.10 mmol) in CH2Cl2 (3.0 mL) was added MVK (0.105 g, 1.5 mmol) at r.t. Then the temperature was raised to 40 ˚C with stirring for 4 h. The solution was extracted with CH2Cl2 (20 mL) and then washed with H2O (2 × 15 mL). The organic layer was dried with Na2SO4 and evaporated to afford a white solid that was purified by flash chromatography (eluent: EtOAc-PE, 1:4) to give the corresponding aza-Morita-Baylis-Hillman adduct 3a (0.289 g, 88%); mp 120.2-121.3 ˚C (lit.,³g 120-121 ˚C). ¹H NMR (400 MHz, CDCl3): δ = 2.15 (s, 3 H, Me), 2.42 (s, 3 H, Me), 5.27 (d, J = 8.7 Hz, 1 H, CH2), 5.71 (d, J = 8.7 Hz, 1 H, CH2), 6.07 (s, 1 H, CH), 6.09 (s, 1 H, NH), 7.08 (m, 2 H, ArH), 7.17-7.22 (m, 5 H, ArH), 7.64 (d, J = 8.0 Hz, 2 H, ArH). MS (ESI): m/z = 328.2 [M - 1]-.