RSS-Feed abonnieren
DOI: 10.1055/s-0031-1290316
Stereoselective Synthesis of vic-Halohydrins via l-tert-Leucine-Catalyzed syn-Selective Aldol Reaction
Publikationsverlauf
Publikationsdatum:
19. Januar 2012 (online)
Abstract
l-tert-Leucine was found to be an effective organocatalyst for the asymmetric aldol reaction of chloroacetone. The stereoselective synthesis of vic-halohydrins was accomplished with excellent regioselectivity (>99%) to generate α-chloro-β-hydroxy ketones with high syn selectivity (syn/anti = 16:1) and enantioselectivity (up to 95% ee).
Key words
aldol reaction - amino acids - asymmetric synthesis - chloroacetone - organocatalysis
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Lu C.Luo Z.Huang L.Li X. Tetrahedron: Asymmetry 2011, 22: 722 -
1b
Bloom JD.Dutia MD.Johnson BD.Wissner A.Burns MG.Largus EE.Dolan JA.Claus TH. J. Med. Chem. 1992, 35: 3081 -
1c
Corey EJ.Link JO. J. Org. Chem. 1991, 56: 442 -
2a
Chung JYL.Cvetovich R.Amato J.McWilliams JC.Reamer R.DiMichele L. J. Org. Chem. 2005, 70: 3592 -
2b
Draper J.Britton R. Org. Lett. 2010, 12: 4034 - 3
Yoshimitsu T.Nakatani R.Kobayashi A.Tanaka T. Org. Lett. 2011, 13: 908 - 4
Kang B.Britton R. Org. Lett. 2007, 9: 5083 -
5a
Stewart CA.VanderWerf CA. J. Am. Chem. Soc. 1954, 76: 1259 -
5b
Owen LN.Saharia GS. J. Chem. Soc. 1953, 2582 -
5c
Ranu BC.Banerjee S. J. Org. Chem. 2005, 70: 4517 -
5d
Yadav JS.Reddy BVS.Baishya G.Harshavardhan SJ.Chary CJ.Gupta MK. Tetrahedron Lett. 2005, 46: 3569 -
5e
Nishitani K.Shinyama K.Yamakawa K. Heterocycles 2007, 74: 191 -
5f
Neimi H.Moradian M. Polyhedron 2008, 27: 3639 -
5g
Pajkert R.Kolomeitsev AA.Milewska M.Röschenthaler G.-V.Koroniak H. Tetrahedron Lett. 2008, 49: 6046 - 6
Corey EJ.Helal CJ. Angew. Chem. Int. Ed. 1998, 37: 1986 -
7a
Ohkuma T.Tsutsumi K.Utsumi N.Arai N.Noyori R.Murata K. Org. Lett. 2007, 9: 255 -
7b
Bayston DJ.Travers CB.Polywka MEC. Tetrahedron: Asymmetry 1998, 9: 2015 -
7c
Cross DJ.Kenny JA.Houson I.Campbell L.Walsgrove T.Wills M. Tetrahedron: Asymmetry 2001, 12: 1801 -
7d
Morris DJ.Hayes AM.Wills M. J. Org. Chem. 2006, 71: 7035 -
8a
Hamada T.Torii T.Izawa K.Ikariya T. Tetrahedron 2004, 60: 7411 -
8b
Hamada T.Torii T.Izawa K.Noyori R.Ikariya T. Org. Lett. 2002, 4: 4373 -
8c
Matharu DS.Morris DJ.Kawamoto AM.Clarkson GJ.Wills M. Org. Lett. 2005, 7: 5489 -
9a
He L.Tang Z.Cun L.-F.Mi A.-Q.Jiang Y.-Z.Gong L.-Z. Tetrahedron 2006, 62: 346 -
9b
Guillena G.Hita MC.Nájera C. Tetrahedron: Asymmetry 2007, 18: 1272 -
9c
Sato K.Kuriyama M.Shimazawa R.Morimoto T.Kakiuchi K.Shirai R. Tetrahedron Lett. 2008, 49: 2402 -
9d
Russo A.Botta G.Lattanzi A. Tetrahedron 2007, 63: 11886 -
9e
Xu X.-Y.Wang Y.-Z.Gong L.-Z. Org. Lett. 2007, 9: 4247 -
10a
Machajewski TD.Wong C.-H. Angew. Chem. Int. Ed. 2000, 39: 1352 -
10b
Vogl HGEM.Shibasaki M. Chem. Eur. J. 1998, 4: 1137 -
10c
Nelson SG. Tetrahedron: Asymmetry 1998, 9: 357 -
10d
Guillena G.Nájera C.Ramón DJ. Tetrahedron: Asymmetry 2007, 18: 2249 -
10e
Mukherjee S.Yang JW.Hoffmann S.List B. Chem. Rev. 2007, 107: 5471 - 12
Kanemitsu T.Umehara A.Miyazaki M.Nagata K.Itoh T. Eur. J. Org. Chem. 2011, 993 -
13a
Notz W.List B. J. Am. Chem. Soc. 2000, 122: 7386 -
13b
Sakthivel K.Notz W.Bui T.Barbas CF. J. Am. Chem. Soc. 2001, 123: 5260 -
13c
Córdova A.Notza W.Barbas CF. Chem. Commun. 2002, 3024 -
13d
Guillena G.Hita MC.Nájera C. Tetrahedron: Asymmetry 2006, 17: 1027 -
13e
Guillena GMC.Nájera C.Viózquez SF. Tetrahedron: Asymmetry 2007, 18: 2300 -
14a
Ramasastry SSV.Zhang H.Tanaka F.Barbas CF.. J. Am. Chem. Soc. 2007, 129: 288 -
14b
Ramasastry SSV.Albertshofer K.Utsumi N.Tanaka F.Barbas CF. Angew. Chem. Int. Ed. 2007, 46: 5572 -
14c
Wu X.Jiang Z.Shen HM.Lu Y. Adv. Synth. Catal. 2007, 349: 812 -
14d
Utsumi N.Imai M.Tanaka F.Ramasastry SSV.Barbas CF. Org. Lett. 2007, 9: 3445 -
14e
Da C S.Che LP.Guo QP.Wu FC.Ma X.Jia YN. J. Org. Chem. 2009, 74: 2541 -
14f
Larionova NA.Kucherenko AS.Siyutkin DE.Zlotin SG. Tetrahedron 2011, 67: 1948 -
14g
Wu X.Ma Z.Ye Z.Qian S.Zhao G. Adv. Synth. Catal. 2009, 351: 158 -
14h
Li J.Luo S.Cheng JP. J. Org. Chem. 2009, 74: 1747 -
15a
Banerjee R.Desiraju GR.Mondal R.Howard JAK. Chem. Eur. J. 2004, 10: 3373 -
15b
In this paper (ref. 15a), Howard and co-workers claimed that chlorine in organic compound is able to work as an intramolecular hydrogen bond acceptor. Their results support the proposed mechanism of our reaction system.
References and Notes
Optimized Procedure
for the Synthesis of 3a
To a mixture of chloroacetone
(1a, 400 µL, 5 mmol) and l-tert-leucine
(13 mg, 0.1 mmol), 4-nitrobenzaldehyde (2a,
76 mg, 0.5 mmol) was added, and the mixture was stirred at r.t. The
reaction was monitored by TLC analysis. After 7 d, H2O was
added and extracted with CH2Cl2 (3×),
dried over MgSO4, and concentrated in vacuo. To determine
the regioselectivity and the diastereomeric ratio, the remaining residue
was analyzed by ¹H NMR. Moreover, the ee value
of the product 3a was determined by chiral-phase
HPLC analysis of the residue. Then, the residue was purified by column
chromatography on silica gel in gradient elution with hexane-EtOAc
to give a 7:1 inseparable mixture of the desired products 3a and 4a (108
mg, 89%).
Analytical Data
for Compound 3a
¹H NMR (400 MHz,
CDCl3): δ = 8.24-8.20 (m,
2 H), 7.61-7.58 (m, 2 H), 5.47 (t, J = 3.6
Hz, 1 H), 4.46 (d, J = 3.2
Hz, 1 H), 3.43 (d, J = 4.0
Hz, 1 H), 2.40 (s, 3 H). ¹³C NMR (100 MHz,
CDCl3): δ = 203.4, 147.6, 146.2, 127.3,
123.5, 72.0, 67.3, 28.3. HPLC: 83% ee [Daicel
CHRALCEL OJ-H, hexane-iPrOH (9:1), flow rate 1.0 mL/min, λ = 254
nm]: t
R(major) = 34.7
min; t
R(minor) = 39.1
min.