Synlett 2012(3): 473-477  
DOI: 10.1055/s-0031-1290314
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Platinum-Catalyzed Transformation of Alkyne Allyl Alcohols and Sulfonamides into Heterotricyclo[3.3.1.02,8]nonanes

So Hee Sim, Youjung Park, Young Keun Chung*
Intelligent Textile System Research Center and Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-474, Korea
Fax: +82(2)8890310; e-Mail: ykchung@snu.ac.kr;
Further Information

Publication History

Received 14 November 2011
Publication Date:
19 January 2012 (online)

Abstract

Platinum chloride catalyzed cycloisomerization of alkyne allyl alcohols and alkyne allyl sulfonamides gave new cycloisomerization products, diaza-, azaoxa-, and dioxatricyclo-[3.3.1.0²,8]nonanes, in reasonable to high yields.

    References and Notes

  • For selected reviews, see:
  • 1a Aubert C. Buisine O. Malacria M. Chem. Rev.  2002,  102:  813 
  • 1b Lloyd-Jones GC. Org. Biomol. Chem.  2003,  1:  215 
  • 1c Echavarren AM. Nevado C. Chem. Soc. Rev.  2004,  33:  431 
  • 1d Diver ST. Giessert AJ. Chem. Rev.  2004,  104:  1317 
  • 1e Hashmi ASK. Angew. Chem. Int. Ed.  2005,  44:  6990 
  • 1f Zhang Z. Zhu G. Tong X. Wang F. Xie X. Wang J. Jiang L. Curr. Org. Chem.  2006,  10:  1457 
  • For reviews, see:
  • 2a Bruneau C. Angew. Chem. Int. Ed.  2005,  44:  2328 
  • 2b Zhang L. Sun J. Kozmin SA. Adv. Synth. Catal.  2006,  348:  2271 
  • 2c Jiménez-Núñez E. Echavarren AM. Chem. Rev.  2008,  108:  3326 
  • 2d Ota K. Lee SI. Tang J.-M. Takachi M. Nakai H. Morimoto T. Sakurai H. Kataoka K. Chatani N. J. Am. Chem. Soc.  2009,  131:  15203 
  • 2e Kim SY. Chung YK. J. Org. Chem.  2010,  75:  1281 
  • 3a Kim SY. Lee SI. Choi SY. Chung YK. Angew. Chem. Int. Ed.  2008,  47:  4914 
  • 3b Kim SY. Park Y. Chung YK. Angew. Chem. Int. Ed.  2010,  49:  415 
  • 3c Kim SY. Kang YK. Chung YK. Chem. Eur. J.  2010,  16:  5310 
  • 3d Nevado C. Ferrer C. Echavarren AM. Org. Lett.  2004,  6:  3191 
  • 3e Ferrer C. Raducan M. Nevado C. Claverie CK. Echavarren AM. Tetrahedron  2007,  63:  6306 
  • 4a Körber N. Rominger F. Müller TJJ. Synlett  2010,  782 
  • 4b Nicolaou KC. Li A. Ellery SP. Edmond DJ. Angew. Chem. Int. Ed.  2009,  48:  6293 
  • 5 Kummeter M. Ruff CM. Müller TJJ. Synlett  2007,  717 
  • 6 Phillips JH. Montgomery J. Org. Lett.  2010,  12:  4556 
  • 7a Kressierer CJ. Müller TJJ. Synlett  2005,  1721 
  • 7b Kressierer CJ. Müller TJJ. Org. Lett.  2005,  7:  2237 
  • 7c Kressierer CJ. Müller TJJ. Tetrahedron Lett.  2004,  45:  2155 
  • 8 Yeh M.-CP. Lin M.-N. Chang W.-J. Liou J.-L. Shih Y.-F. J. Org. Chem.  2010,  75:  6031 
  • 9 Park Y. Kim SY. Park JH. Cho J. Kang YK. Chung YK. Chem. Commun.  2011,  47:  5190 
  • 10a Fürstner A. Davies PW. Gress T. J. Am. Chem. Soc.  2005,  127:  8244 
  • 10b Fürstner A. Szillat H. Stelzer F. J. Am. Chem. Soc.  2000,  122:  6785 
  • 10c Fürstner A. Davies PW. Angew. Chem. Int. Ed.  2007,  46:  3410 
  • 10d Zhang L. Sun J. Kozmin SA. Adv. Synth. Catal.  2006,  348:  2271 
  • 15 For an activation of a double bond by platinum catalyst, see: Bell F. Holland J. Green JC. Gagné MR. Organometallics  2009,  28:  2038 
  • 16 Fürstner A. Stelzer F. Szillat H. J. Am. Chem. Soc.  2001,  123:  11863 
11

The synthetic procedures and spectroscopic data of the new compounds are summarized in the Supporting Information. CCDC-813816 (8B) contains the supplementary crystallo-graphic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

12

General Procedure: To a flame-dried 10-mL Schlenk flask capped with a rubber septum, dioxane (2 mL) and PtCl4 (5 mg, 10 mol%) were added under N2 flow. To the flask, 1 (44 mg, 0.15 mmol) was added under N2. The reaction mixture was stirred at 90 ˚C and was monitored by TLC. After the reaction mixture was cooled to r.t., the reaction mixture was filtered and all the solvent was evaporated under reduced pressure. A flash column chromatography on a silica gel eluting with n-hexane and Et2O (8:2) gave 1B in 80% yield.

13

1B: ¹H NMR (300 MHz, CDCl3): δ = 7.78 (d, J = 8.2 Hz, 2 H), 7.29 (d, J = 8.3 Hz, 2 H), 5.62 (s, 1 H), 4.00 (dd, J = 11.5, 5.5 Hz, 1 H), 3.83 (dd, J = 11.5, 3.5 Hz, 1 H), 3.41 (d, J = 11.4 Hz, 1 H), 3.12 (d, J = 11.5 Hz, 1 H), 2.43 (s, 3 H), 2.03 (dd, J = 12.7, 3.8 Hz, 1 H), 1.87 (d, J = 12.5 Hz, 1 H), 1.13 (s, 3 H), 0.96 (d, J = 6.1 Hz, 1 H), 0.83 (dd, J = 8.3, 5.8 Hz, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 143.5, 135.3, 129.5, 128.2, 78.7, 58.2, 39.7, 32.1, 24.0, 21.8, 20.1, 18.9, 12.0. HRMS (EI): m/z calcd for C15H19O3NS: 293.1086; found: 293.1087.

14

14B:¹H NMR (300 MHz, CDCl3): δ = 7.76 (d, J = 8.2 Hz, 4 H), 7.30 (d, J = 8.1 Hz, 4 H), 6.10 (t, J = 3.2 Hz, 1 H), 3.79 (m, 2 H), 3.13 (d, J = 12.2 Hz, 2 H), 2.43 (s, 6 H), 1.74 (d, J = 3.2 Hz, 2 H), 0.96 (s, 3 H), 0.92 (s, 2 H). ¹³C NMR (75 MHz, CDCl3): δ = 143.8, 135.7, 129.8, 127.9, 63.8, 38.5, 33.0, 23.9, 21.8, 18.4, 12.9. HRMS (EI): m/z calcd for C22H26O4N2S2: 446.1334; found: 446.1332.