Subscribe to RSS
DOI: 10.1055/s-0031-1290208
NHC-Catalyzed Chemo- and Regioselective Hydrosilylation of Carbonyl Derivatives
Publication History
Publication Date:
26 January 2012 (online)
Abstract
The hydrosilylation of carbonyl derivatives has been explored by the activation of diphenylsilane in the presence of a catalytic amount of an N-heterocyclic carbene (NHC). Presumably, a hypervalent silicon intermediate featuring strong Lewis acid character allows dual activation of both the carbonyl moiety and the hydride at the silicon center. Reduction under mild conditions could be accomplished using this organocatalytic process. Some interesting selectivities have been encountered.
Key words
hydrosilylation - N-heterocyclic carbenes - organocatalysis - reduction - green chemistry
- Supporting Information for this article is available online:
- Supporting Information
-
2a
Ojima I. In The Chemistry of Organic Silicon CompoundsPatai S.Rappoport Z. Wiley; New York: 1989. -
2b
Marciniec B. Comprehensive Handbook on Hydrosilylation Pergamon Press; Oxford: 1992. -
2c
Marciniec B. In Applied Homogeneous Catalysis with Organometallic Compounds Vol. 1:Cornils B.Herrmann WA. Wiley-VCH; Weinheim: 1996. Chap. 2. -
2d
Vorbrüggen H. In Silicon-Mediated Transformations of Functional Groups Wiley-VCH; Weinheim: 2004. -
2e
Hydrosilylation:
A Comprehensive Review on Recent Advances (Advances in Silicon Science)
Marciniec B. Springer; Berlin: 2008. -
2f
Modern
Reduction Methods
Andersson PG.Munslow IJ. Wiley-VCH; Weinheim: 2008. -
2g
Hydrosilylation:
A Comprehensive Review on Recent Advances
Marciniec B. Springer; Heidelberg: 2009. -
3a
Nishiyama H. Transition Metals for Organic SynthesisBeller M.Bolm C. Wiley-VCH; Weinheim: 2004. -
3b
Ohkuma T.Noyori R. In Comprehensive Asymmetric CatalysisJacobsen EN.Pfaltz A.Yamamoto H. Springer; Berlin: 1999. -
3c
Ikariya T.Blacker J. Acc. Chem. Res. 2007, 40: 1300 -
3d
Nishiyama H.Itoh K. In Catalytic Asymmetric SynthesisOjima I. Wiley-VCH; Weinheim: 2000. -
3e
Marko I.Sterin S.Buisine O.Mignani G.Branlard P.Tinant B.Declercq J.-P. Science 2002, 298: 204 - For copper catalysts, see:
-
4a
Mahoney WS.Brestensky DM.Stryker JM. J. Am. Chem. Soc. 1988, 110: 291 -
4b
Mahoney WS.Stryker JM. J. Am. Chem. Soc. 1989, 111: 8818 -
4c
Lipshutz BH.Noson K.Chrisman W.
J. Am. Chem. Soc. 2001, 123: 12917 -
4d
Lipshutz BH.Lower A.Noson K. Org. Lett. 2002, 4: 4045 -
4e
Lipshutz BH.Noson K.Chrisman W.Lower A.
J. Am. Chem. Soc. 2003, 125: 8779 -
4f
Lipshutz BH.Frieman BA. Angew. Chem. Int. Ed. 2005, 44: 6345 -
4g
Lipshutz BH.Frieman BA.Tomaso AE. Angew. Chem. Int. Ed. 2006, 45: 1259 -
4h
Hughes G.Kimura M.Buchwald SL. J. Am. Chem. Soc. 2003, 125: 11253 -
4i
Yun J.Kim D.Yun H. Chem. Commun. 2005, 5181 -
4j
Díez-González S.Kauer H.Zinn FK.Stevens ED.Nolan SP. J. Org. Chem. 2005, 70: 4784 -
4k
Rendler S.Oestreich M. Angew. Chem. Int. Ed. 2007, 46: 498 -
4l
Kantam ML.Laha S.Yadav J.Likhar PR.Sreedhar B.Jha S.Bhargava S.Udayakiran M.Jagadeesh B. Org. Lett. 2008, 10: 2979 -
4m
Zhang X.Wu Y.Yu F.Wu F.Wu J.Chan A. Chem. Eur. J. 2009, 15: 5888 -
4n
Kassube JK.Wadepohl H.Gade LH. Adv. Synth. Catal. 2009, 351: 607 -
4o
Junge K.Wendt B.Addis D.Zhou S.Das S.Beller M. Chem. Eur. J. 2010, 16: 68 -
4p
Fujihara T.Semba K.Terao J.Tsuji Y. Angew. Chem. Int. Ed. 2010, 49: 1472 - For iron catalysts, see:
-
5a
Nishiyama H.Furuta A. Chem. Commun. 2007, 760 -
5b
Shaikh NS.Junge K.Beller M. Org. Lett. 2007, 9: 5429 -
5c
Shaikh NS.Enthaler S.Junge K.Beller M. Angew. Chem. Int. Ed. 2008, 47: 2497 -
5d
Sui-Seng C.Freutel F.Lough AJ.Morris RH. Angew. Chem. Int. Ed. 2008, 47: 940 -
5e
Gutsulyak DV.Kuzmina LG.Howard JAK.Vyboishchikov SF.Nikonov GI. J. Am. Chem. Soc. 2008, 130: 3732 -
5f
Tondreau AM.Lobkovsky E.Chirik PJ. Org. Lett. 2008, 10: 2789 -
5g
Yang J.Tilley TD. Angew. Chem. Int. Ed. 2010, 47: 940 - For organocatalytic hydrosilylation of carbonyl functions, see:
-
6a
Parks DJ.Piers WE. J. Am. Chem. Soc. 1996, 118: 9440 -
6b
Parks DJ.Blackwell JM.Piers WE.
J. Org. Chem. 2000, 65: 3090 -
6c
Asao N.Ohishi T.Sato K.Yamamoto Y. J. Am. Chem. Soc. 2001, 123: 6931 -
6d
Iwasaki F.Onomura O.Mishima K.Maki T.Matsumura Y. Tetrahedron Lett. 1999, 40: 7507 -
6e
Matsumura Y.Ogura K.Kouchi Y.Iwasaki F.Onomura O. Org. Lett. 2006, 8: 3789 -
6f
Malkov AV.Liddon AJPS.Ramirez-Lopez P.Bendova L.Haigh D.Kocovsky P. Angew. Chem. Int. Ed. 2006, 45: 1432 - For selective organocatalytic hydrosilylation of ketimines, see:
-
6g
Iwasaki F.Onomura O.Mishima K.Kanematsu T.Maki T.Matsumura Y. Tetrahedron Lett. 2001, 42: 2525 -
6h
Malkov AV.Mariani A.MacDougall K.Kočovský P. Org. Lett. 2004, 6: 2253 -
6i
Malkov AV.Stončius S.MacDougall KN.Mariani A.McGeoch GD.Kočovský P. Tetrahedron 2006, 62: 264 - For silane activation by NHCs, see:
-
7a
Zhao Q.Curran DP.Malacria M.Fensterbank L.Goddard J.-P.Lacote E. Chem. Eur. J. 2011, 17: 9911 -
7b
O’Brien JM.Hoveyda AH. J. Am. Chem. Soc. 2011, 133: 7712 -
7c
Fuchter MJ. Chem. Eur. J. 2010, 16: 12286 -
7d
Tan M.Zhang Y.Ying JY. Adv. Synth. Catal. 2009, 351: 1390 - For extensions of this activation to polymerizations, see:
-
7e
Raynaud J.Ciolino A.Baceiredo A.Destarac M.Bonete F.Kato T.Gnanou Y.Taton D. Angew. Chem. Int. Ed. 2008, 47: 5390 -
7f
Raynaud J.Liu N.Gnanou Y.Taton D. Macromolecules 2010, 43: 8853 -
7g For the activation of a
Si-Sn bond, see:
Blanc R.Commeiras L.Parrain J.-L. Adv. Synth. Catal. 2010, 352: 661 -
7h For carbene activation
of the Si-H bond of silanes, see:
Frey GD.Masuda JD.Donnadieu B.Bertrand G. Angew. Chem. Int. Ed. 2010, 49: 9444 -
7i For carbene activation
of the Si-O bond of siloxanes, see:
Rodriguez M.Marrot S.Kato T.Stérin S.Fleury E.Baceiredo A. J. Organomet. Chem. 2007, 692: 705 -
9a
Tandura SN.Voronkov MG.Alekseev NV. Top. Curr. Chem. 1986, 131: 99 -
9b
Chult C.Corriu RJP.Reye C.Young JC. Chem. Rev. 1993, 93: 1371 -
9c
Tamao K. Proc. Jpn. Acad., Ser. B 2008, 84: 123 -
9d
Holmes RR. Chem. Rev. 1996, 96: 927 -
9e
Dilman AD.Loffe SL. Chem. Rev. 2003, 103: 733 -
9f
Rendler S.Oestreich M. Synthesis 2005, 1727 -
10a
Breeden SW.Lawrence NJ. Synlett 1994, 833 -
10b
Barr KJ.Berk SC.Buchwald SL. J. Org. Chem. 1994, 59: 4323 -
10c
LaRonde FJ.Brook MA. Tetrahedron Lett. 1999, 40: 3507 -
11a
Kuhn N.Kartz T.Bläser D.Boese R. Chem. Ber. 1995, 128: 245 -
11b For the preparation of
base-free NHC samples, see:
Read de Alaniz J.Rovis T. J. Am. Chem. Soc. 2005, 127: 6284 - For representative hydrosilylation of nitriles, see:
-
12a
Khalimon AY.Simionescu R.Kuzmina LG.Howard JAK.Nikonov GI. Angew. Chem. Int. Ed. 2008, 47: 7701 -
12b
Peterson E.Khalimon AY.Simionescu R.Kuzmina LG.Howard JAK.Nikonov GI. J. Am. Chem. Soc. 2009, 131: 908 -
12c
Gutsulyak DV.Nikonov GI. Angew. Chem. Int. Ed. 2010, 49: 7553 -
12d
Watanabe T.Hashimoto H.Tobita H. J. Am. Chem. Soc. 2007, 128: 2176 -
12e
Ochiai M.Hashimoto H.Tobita H. Angew. Chem. Int. Ed. 2007, 46: 8192 - For representative hydrosilylation of esters, see:
-
13a
Mao Z.Gregg BT.Cutler AR. J. Am. Chem. Soc. 1995, 117: 10139 -
13b
Ojima I.Kogure T.Kumagai M. J. Org. Chem. 1977, 42: 1671 -
13c
Igarashi M.Mizuno R.Fuchikami T. Tetrahedron Lett. 2001, 42: 2149 -
13d
Berc SC.Kreutzer KA.Buchwald SL. J. Am. Chem. Soc. 1991, 113: 5093 -
13e
Berc SC.Buchwald SL. J. Org. Chem. 1992, 57: 3751 - 14
Hanada S.Yuasa A.Kuroiwa H.Motoyama Y.Nagashima H. Eur. J. Org. Chem. 2010, 1021 - For reviews of N-heterocyclic carbenes as organocatalysts, see:
-
15a
Enders D.Balensiefer T. Acc. Chem. Res. 2004, 37: 53 -
15b
Marion N.Díez-González S.Nolan SP. Angew. Chem. Int. Ed. 2007, 46: 2988 -
15c
Enders D.Niemeier O.Henseler A. Chem. Rev. 2007, 107: 5606 -
15d
Nair V.Vellalath V.Babu BP. Chem. Soc. Rev. 2008, 37: 2691 -
15e
DiRocco DA.Rovis T. J. Am. Chem. Soc. 2011, 133: 10402 - 16 For an intramolecular hydrosilylation
of β-silyloxy ketones, see:
O’Neil GW.Miller MM.Carter KP. Org. Lett. 2010, 12: 5350
References
Present address: Institut de Chimie des Substances Naturelles CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
8Hydrosilylation of ketone and imine with poly-NHC particles was reported recently, see ref. 7d.
17The triazolium chloride salt (24.4
mg, 0.1equiv) was added to a suspension of NaH (60% in
mineral oil, 4 mg, 0.1 equiv) in anhydrous DMF (1 mL) at r.t. After
stirring for 30 min, H2SiPh2 (111 mg, 0.6
equiv) and the substrate (1 mmol) dissolved in anhydrous DMF (1
mL) were added to the reaction mixture. When no more substrate was
seen by TLC analysis, TBAF (1.0 M in THF, 1 mL, 1 equiv) was added to the
solution. Stirring was continued for 30 min and quenching was achieved
with H2O (10 mL). The mixture was extracted with EtOAc
(3 × 10 mL) and the combined organic
layers were washed with brine (10 mL), dried with anhydrous Na2SO4,
filtered, and the solution was concen-trated in vacuo. The crude
product was purified by flash chromatography.
Analytical
data for some typical examples: Compound 2c: ¹H
NMR (400 MHz, CDCl3): δ = 7.61 (d, J = 8.0 Hz,
2 H), 7.47 (q, J = 8.0 Hz,
2 H), 4.93 (q, J = 6.0 Hz,
1 H), 2.31 (br s, 3 H), 1.47 (d, J = 6.8 Hz,
3 H). ¹³C NMR (100 MHz, CDCl3): δ = 151.2,
132.3, 126.1, 118.9, 111.0, 70.0, 25.4. Compound 2d: ¹H
NMR (400 MHz, CDCl3): δ = 7.97 (d, J = 8.0 Hz,
2 H), 7.40 (q, J = 8.0 Hz,
2 H), 4.92 (q, J = 6.4 Hz,
1 H), 3.88 (s, 3 H), 2.49 (br s, 1 H),
1.47 (d, J = 6.4 Hz,
3 H). ¹³C NMR (100 MHz, CDCl3): δ = 167.1, 151.1,
129.8, 129.1, 125.3, 69.9, 52.1, 25.3. Compound 2h: ¹H
NMR (400 MHz, CDCl3): δ = 7.42 (d, J = 5.6 Hz,
1 H), 7.29-7.22 (m, 3 H), 5.24 (t, J = 6.0 Hz,
1 H), 3.06 (m, 1 H), 2.82 (m, 1 H), 2.53-2.44
(m, 1 H), 1.99-1.90 (m, 2 H). ¹³C NMR
(100 MHz, CDCl3): δ = 145.0, 143.3,
128.3, 126.7, 124.9, 124.2, 76.4, 35.9, 29.8. Compound 2j (syn/anti, 2.5:1): ¹H
NMR (400 MHz, CDCl3): δ = 7.50-7.27
(m, 20 H, syn and anti), 5.00 (t, J = 2.0 Hz,
1 H, anti), 4.73 (t, J = 4.2 Hz,
1 H, syn), 4.17 (d, J = 2.0 Hz,
1 H, anti), 4.04 (d, J = 2.0 Hz,
1 H, syn), 3.34 (dd, J = 4.2, 2.0 Hz,
1 H, syn), 3.32 (dd, J = 2.8, 2.0 Hz,
1 H, anti), 3.01 (d, J = 4.2 Hz,
1 H, syn), 2.85 (d, J = 2.4 Hz,
1 H, anti). ¹³C
NMR (100 MHz, CDCl3): δ = 140.2 (syn), 139.4 (anti),
136.6 (anti), 136.4 (syn),
128.8 (syn), 128.7 (anti),
128.6 (syn and anti),
128.5 (syn), 128.4 (anti),
128.3 (syn and anti),
126.7 (anti), 126.3 (syn),
125.8 (syn and anti),
73.5 (syn), 71.3 (anti),
65.9 (syn), 65.1 (anti),
57.0(syn), 55.2 (anti).
Compound 2l: ¹H NMR (400
MHz, CDCl3): δ = 3.54 (m, 1 H),
1.84-1.67 (m, 5 H), 1.30-0.91 (m, 10 H). ¹³C
NMR (100 MHz, CDCl3): δ = 72.4, 45.1,
28.7, 28.4, 26.5, 26.2, 26.1, 20.4. Compound 4: ¹H NMR
(400 MHz, CDCl3): δ = 7.35-7.24
(m, 5 H), 4.90 (br s, 1 H), 4.31 (d, J = 4.8 Hz,
2 H), 1.47 (s, 9 H). ¹³C
NMR (100 MHz, CDCl3): δ = 155.9, 139.0,
128.6, 127.5, 127.3, 79.5, 44.7, 28.4. Compound 6: ¹H
NMR (400 MHz, CDCl3): δ = 6.04 (d, J = 16.0 Hz,
1 H), 5.48 (dd, J = 16.0,
6.8 Hz, 1 H), 4.35 (sext., J = 6.4 Hz,
1 H), 1.97 (t, J = 6.4 Hz,
2 H), 1.66 (s, 3 H), 1.62-1.51 (m, 3 H),
1.44 (m, 2 H), 1.32 (d, J = 6.0 Hz,
3 H), 0.98 (s, 6 H). ¹³C
NMR (100 MHz, CDCl3): δ = 137.6, 136.6,
128.8, 127.5, 69.5, 39.4, 33.9, 32.7, 28.7, 28.6, 23.6, 21.3, 19.2.
Compound 12: ¹H NMR
(400 MHz, CDCl3): δ = 7.40-7.26
(m, 5 H), 4.1 (s, 1 H), 3.74 (d, J = 11.6 Hz,
2 H), 3.19 (d, J = 11.6 Hz,
1 H), 2.92 (br s, 1 H), 0.73-0.62 (m,
3 H), 0.48-0.44 (m, 1 H). ¹³C
NMR (100 MHz, CDCl3): δ = 142.1, 128.2,
127.5, 126.2, 79.7, 68.4, 27.5, 9.8, 8.0.