Synlett 2012(3): 433-437  
DOI: 10.1055/s-0031-1290208
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

NHC-Catalyzed Chemo- and Regioselective Hydrosilylation of Carbonyl Derivatives

Qiwu Zhaoa, Dennis P. Curranb, Max Malacriaa, Louis Fensterbank*a, Jean-Philippe Goddard*a, Emmanuel Lacôte*a,
a UPMC Univ Paris 06, Institut Parisien de Chimie Moléculaire (UMR CNRS 7201), C. 229, 4 place Jussieu, 75005 Paris, France
Fax: +33(1)44277360; e-Mail: louis.fensterbank@upmc.fr; e-Mail: jean-philippe.goddard@upmc.fr; e-Mail: emmanuel.lacote@icsn.cnrs-gif.fr;
b Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
Further Information

Publication History

Received 4 November 2011
Publication Date:
26 January 2012 (online)

Abstract

The hydrosilylation of carbonyl derivatives has been explored by the activation of diphenylsilane in the presence of a catalytic amount of an N-heterocyclic carbene (NHC). Presumably, a hypervalent silicon intermediate featuring strong Lewis acid character allows dual activation of both the carbonyl moiety and the hydride at the silicon center. Reduction under mild conditions could be accomplished using this organocatalytic process. Some interesting selectivities have been encountered.

    References

  • 2a Ojima I. In The Chemistry of Organic Silicon Compounds   Patai S. Rappoport Z. Wiley; New York: 1989. 
  • 2b Marciniec B. Comprehensive Handbook on Hydrosilylation   Pergamon Press; Oxford: 1992. 
  • 2c Marciniec B. In Applied Homogeneous Catalysis with Organometallic Compounds   Vol. 1:  Cornils B. Herrmann WA. Wiley-VCH; Weinheim: 1996.  Chap. 2.
  • 2d Vorbrüggen H. In Silicon-Mediated Transformations of Functional Groups   Wiley-VCH; Weinheim: 2004. 
  • 2e Hydrosilylation: A Comprehensive Review on Recent Advances (Advances in Silicon Science)   Marciniec B. Springer; Berlin: 2008. 
  • 2f Modern Reduction Methods   Andersson PG. Munslow IJ. Wiley-VCH; Weinheim: 2008. 
  • 2g Hydrosilylation: A Comprehensive Review on Recent Advances   Marciniec B. Springer; Heidelberg: 2009. 
  • 3a Nishiyama H. Transition Metals for Organic Synthesis   Beller M. Bolm C. Wiley-VCH; Weinheim: 2004. 
  • 3b Ohkuma T. Noyori R. In Comprehensive Asymmetric Catalysis   Jacobsen EN. Pfaltz A. Yamamoto H. Springer; Berlin: 1999. 
  • 3c Ikariya T. Blacker J. Acc. Chem. Res.  2007,  40:  1300 
  • 3d Nishiyama H. Itoh K. In Catalytic Asymmetric Synthesis   Ojima I. Wiley-VCH; Weinheim: 2000. 
  • 3e Marko I. Sterin S. Buisine O. Mignani G. Branlard P. Tinant B. Declercq J.-P. Science  2002,  298:  204 
  • For copper catalysts, see:
  • 4a Mahoney WS. Brestensky DM. Stryker JM. J. Am. Chem. Soc.  1988,  110:  291 
  • 4b Mahoney WS. Stryker JM. J. Am. Chem. Soc.  1989,  111:  8818 
  • 4c Lipshutz BH. Noson K. Chrisman W.
    J. Am. Chem. Soc.  2001,  123:  12917 
  • 4d Lipshutz BH. Lower A. Noson K. Org. Lett.  2002,  4:  4045 
  • 4e Lipshutz BH. Noson K. Chrisman W. Lower A.
    J. Am. Chem. Soc.  2003,  125:  8779 
  • 4f Lipshutz BH. Frieman BA. Angew. Chem. Int. Ed.  2005,  44:  6345 
  • 4g Lipshutz BH. Frieman BA. Tomaso AE. Angew. Chem. Int. Ed.  2006,  45:  1259 
  • 4h Hughes G. Kimura M. Buchwald SL. J. Am. Chem. Soc.  2003,  125:  11253 
  • 4i Yun J. Kim D. Yun H. Chem. Commun.  2005,  5181 
  • 4j Díez-González S. Kauer H. Zinn FK. Stevens ED. Nolan SP. J. Org. Chem.  2005,  70:  4784 
  • 4k Rendler S. Oestreich M. Angew. Chem. Int. Ed.  2007,  46:  498 
  • 4l Kantam ML. Laha S. Yadav J. Likhar PR. Sreedhar B. Jha S. Bhargava S. Udayakiran M. Jagadeesh B. Org. Lett.  2008,  10:  2979 
  • 4m Zhang X. Wu Y. Yu F. Wu F. Wu J. Chan A. Chem. Eur. J.  2009,  15:  5888 
  • 4n Kassube JK. Wadepohl H. Gade LH. Adv. Synth. Catal.  2009,  351:  607 
  • 4o Junge K. Wendt B. Addis D. Zhou S. Das S. Beller M. Chem. Eur. J.  2010,  16:  68 
  • 4p Fujihara T. Semba K. Terao J. Tsuji Y. Angew. Chem. Int. Ed.  2010,  49:  1472 
  • For iron catalysts, see:
  • 5a Nishiyama H. Furuta A. Chem. Commun.  2007,  760 
  • 5b Shaikh NS. Junge K. Beller M. Org. Lett.  2007,  9:  5429 
  • 5c Shaikh NS. Enthaler S. Junge K. Beller M. Angew. Chem. Int. Ed.  2008,  47:  2497 
  • 5d Sui-Seng C. Freutel F. Lough AJ. Morris RH. Angew. Chem. Int. Ed.  2008,  47:  940 
  • 5e Gutsulyak DV. Kuzmina LG. Howard JAK. Vyboishchikov SF. Nikonov GI. J. Am. Chem. Soc.  2008,  130:  3732 
  • 5f Tondreau AM. Lobkovsky E. Chirik PJ. Org. Lett.  2008,  10:  2789 
  • 5g Yang J. Tilley TD. Angew. Chem. Int. Ed.  2010,  47:  940 
  • For organocatalytic hydrosilylation of carbonyl functions, see:
  • 6a Parks DJ. Piers WE. J. Am. Chem. Soc.  1996,  118:  9440 
  • 6b Parks DJ. Blackwell JM. Piers WE.
    J. Org. Chem.  2000,  65:  3090 
  • 6c Asao N. Ohishi T. Sato K. Yamamoto Y. J. Am. Chem. Soc.  2001,  123:  6931 
  • 6d Iwasaki F. Onomura O. Mishima K. Maki T. Matsumura Y. Tetrahedron Lett.  1999,  40:  7507 
  • 6e Matsumura Y. Ogura K. Kouchi Y. Iwasaki F. Onomura O. Org. Lett.  2006,  8:  3789 
  • 6f Malkov AV. Liddon AJPS. Ramirez-Lopez P. Bendova L. Haigh D. Kocovsky P. Angew. Chem. Int. Ed.  2006,  45:  1432 
  • For selective organocatalytic hydrosilylation of ketimines, see:
  • 6g Iwasaki F. Onomura O. Mishima K. Kanematsu T. Maki T. Matsumura Y. Tetrahedron Lett.  2001,  42:  2525 
  • 6h Malkov AV. Mariani A. MacDougall K. Kočovský P. Org. Lett.  2004,  6:  2253 
  • 6i Malkov AV. Stončius S. MacDougall KN. Mariani A. McGeoch GD. Kočovský P. Tetrahedron  2006,  62:  264 
  • For silane activation by NHCs, see:
  • 7a Zhao Q. Curran DP. Malacria M. Fensterbank L. Goddard J.-P. Lacote E. Chem. Eur. J.  2011,  17:  9911 
  • 7b O’Brien JM. Hoveyda AH. J. Am. Chem. Soc.  2011,  133:  7712 
  • 7c Fuchter MJ. Chem. Eur. J.  2010,  16:  12286 
  • 7d Tan M. Zhang Y. Ying JY. Adv. Synth. Catal.  2009,  351:  1390 
  • For extensions of this activation to polymerizations, see:
  • 7e Raynaud J. Ciolino A. Baceiredo A. Destarac M. Bonete F. Kato T. Gnanou Y. Taton D. Angew. Chem. Int. Ed.  2008,  47:  5390 
  • 7f Raynaud J. Liu N. Gnanou Y. Taton D. Macromolecules  2010,  43:  8853 
  • 7g For the activation of a Si-Sn bond, see: Blanc R. Commeiras L. Parrain J.-L. Adv. Synth. Catal.  2010,  352:  661 
  • 7h For carbene activation of the Si-H bond of silanes, see: Frey GD. Masuda JD. Donnadieu B. Bertrand G. Angew. Chem. Int. Ed.  2010,  49:  9444 
  • 7i For carbene activation of the Si-O bond of siloxanes, see: Rodriguez M. Marrot S. Kato T. Stérin S. Fleury E. Baceiredo A. J. Organomet. Chem.  2007,  692:  705 
  • 9a Tandura SN. Voronkov MG. Alekseev NV. Top. Curr. Chem.  1986,  131:  99 
  • 9b Chult C. Corriu RJP. Reye C. Young JC. Chem. Rev.  1993,  93:  1371 
  • 9c Tamao K. Proc. Jpn. Acad., Ser. B  2008,  84:  123 
  • 9d Holmes RR. Chem. Rev.  1996,  96:  927 
  • 9e Dilman AD. Loffe SL. Chem. Rev.  2003,  103:  733 
  • 9f Rendler S. Oestreich M. Synthesis  2005,  1727 
  • 10a Breeden SW. Lawrence NJ. Synlett  1994,  833 
  • 10b Barr KJ. Berk SC. Buchwald SL. J. Org. Chem.  1994,  59:  4323 
  • 10c LaRonde FJ. Brook MA. Tetrahedron Lett.  1999,  40:  3507 
  • 11a Kuhn N. Kartz T. Bläser D. Boese R. Chem. Ber.  1995,  128:  245 
  • 11b For the preparation of base-free NHC samples, see: Read de Alaniz J. Rovis T. J. Am. Chem. Soc.  2005,  127:  6284 
  • For representative hydrosilylation of nitriles, see:
  • 12a Khalimon AY. Simionescu R. Kuzmina LG. Howard JAK. Nikonov GI. Angew. Chem. Int. Ed.  2008,  47:  7701 
  • 12b Peterson E. Khalimon AY. Simionescu R. Kuzmina LG. Howard JAK. Nikonov GI. J. Am. Chem. Soc.  2009,  131:  908 
  • 12c Gutsulyak DV. Nikonov GI. Angew. Chem. Int. Ed.  2010,  49:  7553 
  • 12d Watanabe T. Hashimoto H. Tobita H. J. Am. Chem. Soc.  2007,  128:  2176 
  • 12e Ochiai M. Hashimoto H. Tobita H. Angew. Chem. Int. Ed.  2007,  46:  8192 
  • For representative hydrosilylation of esters, see:
  • 13a Mao Z. Gregg BT. Cutler AR. J. Am. Chem. Soc.  1995,  117:  10139 
  • 13b Ojima I. Kogure T. Kumagai M. J. Org. Chem.  1977,  42:  1671 
  • 13c Igarashi M. Mizuno R. Fuchikami T. Tetrahedron Lett.  2001,  42:  2149 
  • 13d Berc SC. Kreutzer KA. Buchwald SL. J. Am. Chem. Soc.  1991,  113:  5093 
  • 13e Berc SC. Buchwald SL. J. Org. Chem.  1992,  57:  3751 
  • 14 Hanada S. Yuasa A. Kuroiwa H. Motoyama Y. Nagashima H. Eur. J. Org. Chem.  2010,  1021 
  • For reviews of N-heterocyclic carbenes as organocatalysts, see:
  • 15a Enders D. Balensiefer T. Acc. Chem. Res.  2004,  37:  53 
  • 15b Marion N. Díez-González S. Nolan SP. Angew. Chem. Int. Ed.  2007,  46:  2988 
  • 15c Enders D. Niemeier O. Henseler A. Chem. Rev.  2007,  107:  5606 
  • 15d Nair V. Vellalath V. Babu BP. Chem. Soc. Rev.  2008,  37:  2691 
  • 15e DiRocco DA. Rovis T. J. Am. Chem. Soc.  2011,  133:  10402 
  • 16 For an intramolecular hydrosilylation of β-silyloxy ketones, see: O’Neil GW. Miller MM. Carter KP. Org. Lett.  2010,  12:  5350 
1

Present address: Institut de Chimie des Substances Naturelles CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France

8

Hydrosilylation of ketone and imine with poly-NHC particles was reported recently, see ref. 7d.

17

The triazolium chloride salt (24.4 mg, 0.1equiv) was added to a suspension of NaH (60% in mineral oil, 4 mg, 0.1 equiv) in anhydrous DMF (1 mL) at r.t. After stirring for 30 min, H2SiPh2 (111 mg, 0.6 equiv) and the substrate (1 mmol) dissolved in anhydrous DMF (1 mL) were added to the reaction mixture. When no more substrate was seen by TLC analysis, TBAF (1.0 M in THF, 1 mL, 1 equiv) was added to the solution. Stirring was continued for 30 min and quenching was achieved with H2O (10 mL). The mixture was extracted with EtOAc (3 × 10 mL) and the combined organic layers were washed with brine (10 mL), dried with anhydrous Na2SO4, filtered, and the solution was concen-trated in vacuo. The crude product was purified by flash chromatography.
Analytical data for some typical examples: Compound 2c: ¹H NMR (400 MHz, CDCl3): δ = 7.61 (d, J = 8.0 Hz, 2 H), 7.47 (q, J = 8.0 Hz, 2 H), 4.93 (q, J = 6.0 Hz, 1 H), 2.31 (br s, 3 H), 1.47 (d, J = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 151.2, 132.3, 126.1, 118.9, 111.0, 70.0, 25.4. Compound 2d: ¹H NMR (400 MHz, CDCl3): δ = 7.97 (d, J = 8.0 Hz, 2 H), 7.40 (q, J = 8.0 Hz, 2 H), 4.92 (q, J = 6.4 Hz, 1 H), 3.88 (s, 3 H), 2.49 (br s, 1 H), 1.47 (d, J = 6.4 Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 167.1, 151.1, 129.8, 129.1, 125.3, 69.9, 52.1, 25.3. Compound 2h: ¹H NMR (400 MHz, CDCl3): δ = 7.42 (d, J = 5.6 Hz, 1 H), 7.29-7.22 (m, 3 H), 5.24 (t, J = 6.0 Hz, 1 H), 3.06 (m, 1 H), 2.82 (m, 1 H), 2.53-2.44 (m, 1 H), 1.99-1.90 (m, 2 H). ¹³C NMR (100 MHz, CDCl3): δ = 145.0, 143.3, 128.3, 126.7, 124.9, 124.2, 76.4, 35.9, 29.8. Compound 2j (syn/anti, 2.5:1): ¹H NMR (400 MHz, CDCl3): δ = 7.50-7.27 (m, 20 H, syn and anti), 5.00 (t, J = 2.0 Hz, 1 H, anti), 4.73 (t, J = 4.2 Hz, 1 H, syn), 4.17 (d, J = 2.0 Hz, 1 H, anti), 4.04 (d, J = 2.0 Hz, 1 H, syn), 3.34 (dd, J = 4.2, 2.0 Hz, 1 H, syn), 3.32 (dd, J = 2.8, 2.0 Hz, 1 H, anti), 3.01 (d, J = 4.2 Hz, 1 H, syn), 2.85 (d, J = 2.4 Hz, 1 H, anti). ¹³C NMR (100 MHz, CDCl3): δ = 140.2 (syn), 139.4 (anti), 136.6 (anti), 136.4 (syn), 128.8 (syn), 128.7 (anti), 128.6 (syn and anti), 128.5 (syn), 128.4 (anti), 128.3 (syn and anti), 126.7 (anti), 126.3 (syn), 125.8 (syn and anti), 73.5 (syn), 71.3 (anti), 65.9 (syn), 65.1 (anti), 57.0(syn), 55.2 (anti). Compound 2l: ¹H NMR (400 MHz, CDCl3): δ = 3.54 (m, 1 H), 1.84-1.67 (m, 5 H), 1.30-0.91 (m, 10 H). ¹³C NMR (100 MHz, CDCl3): δ = 72.4, 45.1, 28.7, 28.4, 26.5, 26.2, 26.1, 20.4. Compound 4: ¹H NMR (400 MHz, CDCl3): δ = 7.35-7.24 (m, 5 H), 4.90 (br s, 1 H), 4.31 (d, J = 4.8 Hz, 2 H), 1.47 (s, 9 H). ¹³C NMR (100 MHz, CDCl3): δ = 155.9, 139.0, 128.6, 127.5, 127.3, 79.5, 44.7, 28.4. Compound 6: ¹H NMR (400 MHz, CDCl3): δ = 6.04 (d, J = 16.0 Hz, 1 H), 5.48 (dd, J = 16.0, 6.8 Hz, 1 H), 4.35 (sext., J = 6.4 Hz, 1 H), 1.97 (t, J = 6.4 Hz, 2 H), 1.66 (s, 3 H), 1.62-1.51 (m, 3 H), 1.44 (m, 2 H), 1.32 (d, J = 6.0 Hz, 3 H), 0.98 (s, 6 H). ¹³C NMR (100 MHz, CDCl3): δ = 137.6, 136.6, 128.8, 127.5, 69.5, 39.4, 33.9, 32.7, 28.7, 28.6, 23.6, 21.3, 19.2. Compound 12: ¹H NMR (400 MHz, CDCl3): δ = 7.40-7.26 (m, 5 H), 4.1 (s, 1 H), 3.74 (d, J = 11.6 Hz, 2 H), 3.19 (d, J = 11.6 Hz, 1 H), 2.92 (br s, 1 H), 0.73-0.62 (m, 3 H), 0.48-0.44 (m, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 142.1, 128.2, 127.5, 126.2, 79.7, 68.4, 27.5, 9.8, 8.0.