Synlett 2012(5): 699-705  
DOI: 10.1055/s-0031-1290132
ACCOUNT
© Georg Thieme Verlag Stuttgart ˙ New York

Bidentate Lewis Acids as Catalysts for the Activation of 1,2-Diazenes in Organic Synthesis

Hermann A. Wegner*, Simon N. Kessler
University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056 Basel, Switzerland
Fax: +41(61)2670976; e-Mail: hermann.wegner@unibas.ch;
Further Information

Publication History

Received 3 September 2011
Publication Date:
04 January 2012 (online)

Abstract

A new concept for the catalysis of the inverse-electron-demand Diels-Alder (IEDDA) reaction of 1,2-diazenes using bidentate Lewis acid was recently reported by our group. The general catalytic principle is based on the simultaneous coordination of the bidentate Lewis acid to the 1,2-diazene moiety, lowering the LUMO to facilitate the cycloaddition step. Extrusion of N2 regenerates the catalyst and after elimination the aromatic product is obtained. In this account the development of this new catalytic principle is described and put into the general context of Lewis acid catalysis.

1 Introduction

2 Interaction of Bidentate Lewis Acids with 1,2-Diazenes

3 Catalytic IEDDA Reaction of 1,2-Diazenes with a Bidentate Lewis Acid

3.1 The General Principle of Catalysis

3.2 Evaluation of the Concept by Calculations

3.3 Synthesis of the Bidentate Lewis Acid Catalyst

3.4 Characterization of the Bidentate Lewis Acid-1,2-Diazene Complex

3.5 Catalysis of the IEDDA Reaction of 1,2-Diazenes

3.6 General Trends

4 Conclusion

    References

  • 1 Metal-Catalyzed Cross-Coupling Reactions   2nd ed.:  de Meijere A. Diederich F. Wiley-VCH; Weinheim: 2004. 
  • 2a Handbook of Metathesis   Grubbs RH. Wiley-VCH; Weinheim: 2003. 
  • 2b Metathesis in Natural Product Synthesis. Strategies, Substrates and Catalysts; Cossy J., Arseniyadis S., Meyer C.; Wiley-VCH: Weinheim, 2011
  • 3 Lewis Acids in Organic Synthesis   Yamamoto H. Wiley-VCH; Weinheim: 2000. 
  • 4 Inukai T. Kojima T. J. Org. Chem.  1966,  31:  1121 
  • 5 Biallas MJ. Shriver DF. J. Am. Chem. Soc.  1966,  88:  375 
  • 6 Wuest JD. Acc. Chem. Res.  1999,  32:  81 
  • 7 Grdenić D. Korpar-Čolig B. Sikirica M. Bruvo M.
    J. Organomet. Chem.  1982,  238:  327 
  • 8 Ooi T. Takahashi M. Maruoka K. J. Am. Chem. Soc.  1996,  118:  11307 
  • 9 Maruoka K. Catal. Today  2001,  66:  33 
  • 10a

    see ref. 9

  • 10b Maruoka K. Pure Appl. Chem.  2002,  74:  123 
  • 10c Li H. Marks TJ. Proc. Natl. Acad. Sci. U.S.A.  2006,  103:  15295 
  • For reviews, see:
  • 11a Taylor MS. Jacobsen EN. Angew. Chem. Int. Ed.  2006,  45:  1520 
  • 11b Connon SJ. Chem. Commun.  2008,  2499 
  • 11c Akiyama T. Itoh J. Fuchibe K. Adv. Synth. Catal.  2006,  348:  999 
  • 11d Takemoto Y. Chem. Pharm. Bull.  2010,  58:  593 
  • 11e Pihko PM. Angew. Chem. Int. Ed.  2004,  43:  2062 
  • 11f Schreiner PR. Chem. Soc. Rev.  2003,  32:  289 
  • 12 Okino T. Hoashi Y. Takemoto Y. J. Am. Chem. Soc.  2003,  125:  12672 
  • 13 Hoashi Y. Okino T. Takemoto Y. Angew. Chem. Int. Ed.  2005,  44:  4032 
  • For reviews, see:
  • 14a Lee AY. Stewart JD. Clardy J. Ganem B. Chem. Biol.  1995,  2:  195 
  • 14b Ganem B. Angew. Chem., Int. Ed. Engl.  1996,  35:  936 
  • 15 Kessler SN. Wegner HA. Org. Lett.  2010,  12:  4062 
  • 16 Kessler SN. Neuburger M. Wegner HA. Eur. J. Org. Chem.  2011,  3238 
  • 17a Drew MGB. Yates PC. Troch-Grimshaw J. Lavery A. McKillop KP. Nelson SM. Nelson J.
    J. Chem. Soc., Dalton Trans.  1988,  347 
  • 17b Drew MGB. Yates PC. Paul BP. Nelson J. Inorg. Chim. Acta  1986,  118:  37 
  • 18 Xiao N. Xu Q. Sun J. Chen J. Dalton Trans.  2005,  3250 
  • 19 Austin M. Gebreyes K. Kuivila HG. Swami K. Zubieta JA. Organometallics  1987,  6:  834 
  • 20 Gabbai FP. Schier A. Riede J. Hynes MJ. Chem. Commun.  1998,  897 
  • 21 Isobe K. Okeya S. Meanwell NJ. Smith AJ. Adams H. Maitlis PM. J. Chem. Soc., Dalton Trans.  1984,  1215 
  • 22 Rashidi M. Nabavizadeh SM. Zare A. Jamali S. Puddephatt RJ. Inorg. Chem.  2010,  49:  8435 
  • 23 Jaska CA. Emslie DJH. Bosdet MJD. Piers WE. Sorensen TS. Parvez M. J. Am. Chem. Soc.  2006,  128:  10885 
  • 24 Lorbach A. Bolte M. Lerner H.-W. Wagner M. Chem. Commun.  2010,  46:  3592 
  • 25a Boger DL. Tetrahedron  1983,  39:  2869 
  • 25b Boger DL. Coleman RS. J. Org. Chem.  1984,  49:  2240 
  • 26 Turchi S. Nesi R. Giomi D. Tetrahedron  1998,  54:  1809 
  • 27 Gruseck U. Heuschmann M. Tetrahedron Lett.  1987,  28:  6027 
  • 28 Boger DL. Coleman RS. J. Am. Chem. Soc.  1987,  109:  2717 
  • 29 Bodwell GJ. Li J. Angew. Chem. Int. Ed.  2002,  41:  3261 
  • 30a Hartmann K.-P. Heuschmann M. Angew. Chem., Int. Ed. Engl.  1989,  28:  1267 
  • 30b Hartmann K.-P. Heuschmann M. Tetrahedron  2000,  56:  4213 
  • 31a Ernd M. Heuschmann M. Zipse H. Helv. Chim. Acta  2005,  88:  1491 
  • 31b Rooshenas P. Hof K. Schreiner P. Williams C. Eur. J. Org. Chem.  2011,  983 
  • 32 Bettinger HF. Filthaus M. J. Org. Chem.  2007,  72:  9750 
  • 33a Bader S. Kessler SN. Wegner HA. Synthesis  2010,  2759 
  • 33b Recently also a protocol accessing 1,2-bis(TMS)- benzene by using Rieke-Mg or Mg turnings in the presence of 1,2-dibromoethane as an entrainer was published: Lorbach A. Reus C. Bolte M. Lerner H.-W. Wagner M. Adv. Synth. Catal.  2010,  352:  3443 
  • 34 Kaufmann D. Chem. Ber./Recl.  1987,  120:  901 
  • 35 Schacht W. Kaufmann D. J. Organomet. Chem.  1987,  331:  139 
  • 36 Schulz H. Pritzkow H. Siebert W. Chem. Ber.  1991,  124:  2203 
  • 37 Uno H. Okada S. Suzuki H. Tetrahedron  1991,  47:  6231 
  • 38 Sauer J. Heldmann DK. Hetzenegger J. Krauthan J. Sichert H. Schuster J. Eur. J. Org. Chem.  1998,  2885