Synlett 2012(2): 317-318  
DOI: 10.1055/s-0031-1290127
SPOTLIGHT
© Georg Thieme Verlag Stuttgart ˙ New York

Lithium Naphthalenide

Jian-Wu Gao*
The College of Chemistry & Material Science, Hebei Normal University, Shijiazhuang 050016, P. R. of China
e-Mail: gjw1112003@yahoo.com.cn;
Further Information

Publication History

Publication Date:
04 January 2012 (online)

Introduction

During the last three decades, the use of lithium naphthalenide (LN) as a reductant in organic synthesis has increased considerably. It has been used for the reductive cleavage of benzyl ethers, [¹] N,N,N′,N′-tetramethylphosphorodiamidates, [²] and chlorinated aryloxyalkanoic acids. [³] It was found to be a useful reagent for the removal of sulfide and sulfone. [4] In addition, LN-induced reductive ­decyanation, [5] alkylation, [6] and dehalogenation [7] are also readily accomplished.

Lithium naphthalenide can be dissolved in ether, benzene, and tetrahydrofuran, and can be stored in solution up to several days. But it must be protected from air and moisture and can react with protic solvents and tetrahydrofuran at elevated temperatures. [8] It can be conveniently prepared as a stable stock solution by mixing equal parts of freshly cut lithium metal and naphthalene in tetrahydrofuran at room temperature. [9]

Scheme 1

    References

  • 1a Liu HJ. Yip J. Shia KS. Tetrahedron Lett.  1997,  38:  2253 
  • 1b Khare NK. Reynolds RC. Maddry JA. Indian J. Chem.  2008,  47B, 1748 
  • 2 Liu HJ. Shang X. Tetrahedron Lett.  1998,  39:  36 
  • 3 Azzena U. Pittalis M. Tetrahedron  2011,  67:  3360 
  • 4a Huang PQ. Synlett  2006,  1133 
  • 4b Chen W. Zheng X. Ruan YP. Huang PQ. Heterocycles  2009,  79:  681 
  • 4c Denmark SE. Kobayashi T. Regens CS. Tetrahedron  2010,  66:  4745 
  • 4d Hirai S. Nakada M. Tetrahedron Lett.  2010,  51:  5076 
  • 4e Hirai S. Nakada M. Tetrahedron  2011,  67:  518 
  • 5 Amancha PK. Liu HJ. Ly TW. Shia KS. Eur. J. Org. Chem.  2010,  3473 
  • 6a Chu KC. Liu HJ. Zhu JL. Synlett  2010,  3061 
  • 6b Amancha PK. Lai YC. Chen IC. Liu HJ. Zhu JL. Tetrahedron  2010,  66:  871 
  • 6d Zhu JL. Huang PW. You RY. Lee FY. Tsao SW. Chen IC. Synthesis  2011,  715 
  • 6e Chin CL. Liao CF. Liu HJ. Wong YC. Hsieh MT. Amancha PK. Chang CP. Shia KS. Org. Biomol. Chem.  2011,  9:  4778 
  • 7 Watanabe H. Takeuchi K. Nakajima K. Nagai Y. Goto M. Chem. Lett.  1988,  1343 
  • 8 Fujita T. Suga K. Watanabe S. Synthesis  1972,  630 
  • 9 Hilmey DG. Paquette LA. Org. Synth.  2007,  84:  156 
  • 10 Tsao JP. Tsai TY. Chen IC. Liu HJ. Zhu JL. Tsao SW. Synthesis  2010,  4242 
  • 11 Liao CC. Zhu JL. J. Org. Chem.  2009,  74:  7873 
  • 12 Ko YC. Zhu JL. Synthesis  2007,  3659 
  • 13 Zhu JL. Ko YC. Kuo CW. Shia KS. Synlett  2007,  1274 
  • 14 Jankowska R. Mhehe GL. Liu HJ. Chem. Commun.  1999,  1581 
  • 15 Wu YK. Liu HJ. Zhu JL. Synlett  2008,  621 
  • 16 Zhang HY. Karasawa T. Yamada H. Wakamiya A. Yamaguchi S. Org. Lett.  2009,  11:  3076