Synlett 2012(1): 137-141  
DOI: 10.1055/s-0031-1290096
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Transesterification of α-Amino Esters Catalyzed by a Tetranuclear Zinc Cluster: Zn4(OCOCF3)6O

Yusuke Maegawaa, Kazushi Agurab, Yukiko Hayashia, Takashi Ohshima*b, Kazushi Mashima*a
a Department of Chemistry, Graduate School of Engineering Science, Osaka University and CREST, JST, Toyonaka,Osaka 560-8631, Japan
e-Mail: mashima@chem.es.osaka-u.ac.jp;
b Graduate School of Pharmaceutical Sciences, Kyushu University and CREST, JST, Higashi-ku, Fukuoka 812-8582, Japan
e-Mail: ohshima@phar.kyushu-u.ac.jp;
Further Information

Publication History

Received 17 August 2011
Publication Date:
09 December 2011 (online)

Abstract

Transesterification of amino acid ester derivatives was developed using a tetranuclear zinc cluster, Zn4(OCOCF3)6O, as the catalyst. Because the reaction conditions were very mild, a variety of N-protective groups and functional groups on side chains were tolerated.

    References and Notes

  • 1 Jakubke HD. Jeschkeit J. Amino Acids, Peptides and Proteins   Macmillan; London: 1977. 
  • 2a Beauchamp LM. Orr GF. de Miranda P. Burnette T. Krenitsky TA. Antiviral Chem. Chemother.  1992,  3:  157 
  • 2b Prescovitz MD. Transplant. Rev.  2006,  20:  82 
  • 3 Hansen BV, Gunnarsson POG, Mollberg HR, and Johansson SA. inventors; US  5036062. 
  • 4 Milioni C, Efthyimiopoulos C, Koch B, Jung L, and Jung J. inventors; US  4913852. 
  • 5 Hewawasam P, Chen X, and Starrett JE. inventors; WO  9938853. 
  • 6a Otera J. Nishikido J. Esterification   2nd ed.:  Wiley-VCH; Weinheim: 2010.  p.25-46  
  • 6b Ogliaruso MA. Wolfe JF. Synthesis of Carboxylic Acids, Esters and Their Derivatives   John Wiley and Sons; New York: 1991.  p.145-148  
  • 6c Ogliaruso MA. Wolfe JF. Synthesis of Carboxylic Acids, Esters and their Derivatives   John Wiley and Sons; New York: 1991.  p.377-465  
  • 7 Dhaon MK. Olsen RK. Ramasamy K. J. Org. Chem.  1982,  47:  1962 
  • 8a Otera J. Chem. Rev.  1993,  93:  1449 
  • 8b Grasa GA. Singh R. Nolan SP. Synthesis  2004,  971 
  • 8c Hoydonckx HE. De Vos DE. Chavan SA. Jacobs PA. Top. Catal.  2004,  27:  83 
  • 9 Rehberg CE. Fisher CH. J. Org. Chem.  1947,  12:  226 
  • 10a Seebach D. Hungerbuehler E. Naef R. Schnurrenberger P. Weidmann B. Zueger M. Synthesis  1982,  138 
  • 10b Schnurrenberger P. Züger MF. Seebach D. Helv. Chim. Acta  1982,  65:  1197 
  • 10c Krasik P. Tetrahedron Lett.  1998,  39:  4223 
  • 11a Otera J. Yano T. Kawabata A. Nozaki H. Tetrahedron Lett.  1986,  27:  2383 
  • 11b Otera J. Ioka S. Nozaki H. J. Org. Chem.  1989,  54:  4013 
  • 11c Otera J. Dan-oh N. Nozaki H. J. Org. Chem.  1991,  56:  5307 
  • 11d Otera J. Dan-oh N. Nozaki H. Tetrahedron  1993,  49:  3065 
  • 11e Orita A. Mitsutome A. Otera J. J. Org. Chem.  1998,  63:  2420 
  • 11f Orita A. Hamada Y. Nakano T. Toyoshima S. Otera J. Chem. Eur. J.  2001,  7:  3321 
  • 11g Xiang J. Toyoshima S. Orita A. Otera J. Angew. Chem. Int. Ed.  2001,  40:  3670 
  • 11h Xiang J. Orita A. Otera J. Adv. Synth. Catal.  2002,  344:  84 
  • 11i Xiang J. Orita A. Otera J. J. Org. Chem.  2002,  648:  246 
  • 11j Otera J. Acc. Chem. Res.  2004,  37:  288 
  • 12a Brenner M. Huber W. Helv. Chim. Acta  1953,  36:  1109 
  • 12b Rehwinkel H. Steglich W. Synthesis  1982,  826 
  • 12c Seebach D. Thaler A. Blaser D. Ko SY. Helv. Chem. Acta  1991,  74:  1102 
  • 13a Ohshima T. Iwasaki T. Maegawa Y. Yoshiyama A. Mashima K. J. Am. Chem. Soc.  2008,  130:  2944 
  • 13b Iwasaki T. Maegawa Y. Hayashi Y. Ohshima T. Mashima K. J. Org. Chem.  2008,  73:  5147 
  • 13c Iwasaki T. Maegawa M. Hayashi Y. Ohshima T. Mashima K. Synlett  2009,  1659 
  • 13d Iwasaki T. Agura K. Maegawa Y. Hayashi Y. Ohshima T. Mashima K. Chem. Eur. J.  2010,  16:  11567 
  • 14 Shapiro G. Marzi M. J. Org. Chem.  1997,  62:  7096 
  • 15 Maegawa Y. Ohshima T. Hayashi Y. Agura K. Iwasaki T. Mashima K. ACS Catal.  2011,  1:  1178 
  • 17a Smith GG. Sivakua T. J. Org. Chem.  1983,  48:  627 
  • 17b Matsuo H., Kawazoe Y., Sato M., Ohnishi M., Tatsuno T.; Chem. Pharm. Bull.; 1967, 15: 391
  • 17c Sato M. Tatsuno T. Matsuo H. Chem. Pharm. Bull.  1970,  18:  1794 
16

Even in the presence of DMAP base (20 mol%), no epimerization of the products 5ab (>99% ee) and 6ab (98% de) were observed. Only in the case of phenylglycine derivative 10aa, partial epimerization was detected with DMAP additive (99% ee to 63% ee), although the reaction of 10aa did not require the addition of DMAP.

18

No peak corresponding to amide was found in the ¹H NMR spectrum of the crude product before Cbz protection.