Synlett 2012(2): 259-262  
DOI: 10.1055/s-0031-1290078
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Pd(II)-Catalyzed Direct Olefination of Arenes with Allylic Esters and Ethers

Xiaojie Shang, Yun Xiong, Yuexia Zhang, Lei Zhang, Zhongquan Liu*
State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. of China
Fax: +86(931)8915557; e-Mail: liuzhq@lzu.edu.cn;
Further Information

Publication History

Received 25 September 2011
Publication Date:
03 January 2012 (online)

Abstract

A convenient Pd(II)-catalyzed direct olefination of unactivated arenes with allylic esters and ethers via C-H activation was demonstrated. Under the typical conditions, various aryl-substituted allylic esters and ethers can be prepared.

    References and Notes

  • For representative reviews, see:
  • 1a Arndtsen BA. Bergman RG. Mobley TA. Peterson TH. Acc. Chem. Res.  1995,  28:  154 
  • 1b Dyker G. Angew. Chem. Int. Ed.  1999,  38:  1698 
  • 1c Jia C.-G. Kitamura T. Fujiwara Y. Acc. Chem. Res.  2001,  34:  633 
  • 1d Ritleng V. Sirlin C. Pfeffer M. Chem. Rev.  2002,  102:  1731 
  • 1e Kakiuchi F. Chatani N. Adv. Synth. Catal.  2003,  345:  1077 
  • 1f Godula K. Sames D. Science  2006,  312:  67 
  • 1g Bergman RG. Nature (London)  2007,  446:  391 
  • 1h Alberico D. Scott ME. Lautens M. Chem. Rev.  2007,  107:  174 
  • 1i Ackermann L. Vicente R. Kapdi AR. Angew. Chem. Int. Ed.  2009,  48:  9792 
  • 1j Chen X. Engle KM. Wang D.-H. Yu J.-Q. Angew. Chem. Int. Ed.  2009,  48:  5094 
  • 1k Thansandote P. Lautens M. Chem. Eur. J.  2009,  15:  5874 
  • 1l Li C.-J. Acc. Chem. Res.  2009,  42:  335 
  • 1m Daugulis O. Do H.-Q. Shabashov D. Acc. Chem. Res.  2009,  42:  1074 
  • 1n Dobereiner GE. Crabtree RH. Chem. Rev.  2010,  110:  681 
  • 1o Lyons TW. Sanford MS. Chem. Rev.  2010,  110:  1147 
  • 1p Zhang S.-Y. Zhang F.-M. Tu Y.-Q. Chem. Soc. Rev.  2011,  40:  1937 
  • 1q Sun C.-L. Li B.-J. Shi Z.-J. Chem. Rev.  2011,  111:  1293 
  • 1r Li B.-J. Yang S.-D. Shi Z.-J. Synlett  2008,  949 
  • 1s Sun C.-L. Li B.-J. Shi Z.-J. Chem. Commun.  2010,  46:  677 
  • 2 For a very recent excellent review, see: Bras JL. Muzart J. Chem. Rev.  2011,  111:  1170 
  • 3a Moritani I. Fujiwara Y. Tetrahedron Lett.  1967,  8:  1119 
  • 3b Fujiwara Y. Moritani I. Danno S. Asano R. Teranishi S. J. Am. Chem. Soc.  1969,  91:  7166 
  • 3c Jia C. Piao D. Oyamada J. Lu W. Kitamura T. Fujiwara Y. Science  2000,  287:  1992 
  • 4a Yokota T. Tani M. Sakaguchi S. Ishii Y. J. Am. Chem. Soc.  2003,  125:  1476 
  • 4b Dams M. De Vos DE. Celen S. Jacobs PA. Angew. Chem. Int. Ed.  2003,  42:  3512 
  • 5a Zhang Y.-H. Shi B.-F. Yu J.-Q. J. Am. Chem. Soc.  2009,  131:  5072 
  • 5b Ye M.-C. Gao G.-L. Yu J.-Q. J. Am. Chem. Soc.  2011,  133:  6964 
  • 6 Zhang X. Fan S. He C.-Y. Wan X. Min Q.-Q. Yang J. Jiang Z.-X. J. Am. Chem. Soc.  2010,  132:  4506 
  • 7a Miura M. Tsuda T. Satoh T. Pivsa-Art S. Nomura M. J. Org. Chem.  1998,  63:  5211 
  • 7b Boele MDK. van Strijdonck GTPF. de Vries AHM. Kamer PCJ. de Vries JG. van Leeuwen PWNM. J. Am. Chem. Soc.  2002,  124:  1586 
  • 7c Zaitsev VG. Daugulis O. J. Am. Chem. Soc.  2005,  127:  4156 
  • 7d Wang J.-R. Yang C.-T. Liu L. Guo Q.-X. Tetrahedron Lett.  2007,  48:  5449 
  • 7e Cai G. Fu Y. Li Y. Wan X. Shi Z. J. Am. Chem. Soc.  2007,  129:  7666 
  • 7f Li J.-J. Mei T.-S. Yu J.-Q. Angew. Chem. Int. Ed.  2008,  47:  6452 
  • 7g Houlden CE. Bailey CD. Ford JG. Gagné MR. Lloyd-Jones GC. Booker-Milburn KI. J. Am. Chem. Soc.  2008,  130:  10066 
  • 7h Wang D.-H. Engle KM. Shi B.-F. Yu J.-Q. Science  2010,  327:  315 
  • 7i Park SH. Kim JY. Chang S. Org. Lett.  2011,  13:  2372 
  • 8 Cho SH. Hwang SJ. Chang S. J. Am. Chem. Soc.  2008,  130:  9254 
  • 9 Pan D. Jiao N. Synlett  2010,  1577 
  • 10a Pan D. Chen A. Su Y. Zhou W. Li S. Jia W. Xiao J. Liu Q. Zhang L. Jiao N. Angew. Chem. Int. Ed.  2008,  47:  4729 
  • 10b Su YJ. Jiao N. Org. Lett.  2009,  11:  2980 
  • 10c Pan D. Yu M. Chen W. Jiao N. Chem. Asian J.  2010,  5:  1090 
  • 13a Bernocchi E. Cacchi S. Ciattini PG. Morera E. Ortar G. Tetrahedron Lett.  1992,  33:  3073 
  • 13b Kang S.-K. Lee H.-W. Jang S.-B. Kim T.-H. Pyun S.-J. J. Org. Chem.  1996,  61:  2604 
11

The cinnamyl acetate was also generated in the absence of toluene when PdCl2(Ph3P)2 was used as catalyst.

12

Typical Procedure A mixture of mesitylene (1.9 mL, as solvent), allyl acetate (0.6 mmol, 60 mg), Pd(OAc)2 (0.06 mmol), AgOAc (1.2 mmol), and DMSO (0.1 mL) was added to a round-bottom flask. After stirring for 12 h at 110 ˚C, the solvent was removed under reduced pressure, and the residue was purified by flash chromatography on silica gel (eluent: PE-EtOAc = 20:1) to afford (E)-3-mesitylallyl acetate (73 mg, 56%) as a colorless oil. ¹H NMR (400 MHz, CDCl3): δ = 6.88 (s, 2 H), 6.64 (d, J = 16.0 Hz, 1 H), 5.84-5.76 (m, J = 16.0, 6.4 Hz, 1 H), 4.76 (dd, J = 6.4, 1.2 Hz, 2 H), 2.28 (s, 9 H), 2.12 (s, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 170.8, 136.4, 135.8, 132.9, 131.9, 128.6, 128.5, 65.4, 21.0, 20.9, 20.8, 20.7. HRMS: m/z calcd for C14H18NaO2: 241.1199; found: 241.1197.