Synlett 2011(20): 2929-2938  
DOI: 10.1055/s-0031-1289905
ACCOUNT
© Georg Thieme Verlag Stuttgart ˙ New York

Recent Advances in Selective Reactions Promoted by Barium Reagents

Akira Yanagisawa*, Kazuhiro Yoshida
Department of Chemistry, Graduate School of Science, Chiba University, Inage, Chiba 263-8522, Japan
Fax: +81(43)2902789; e-Mail: ayanagi@faculty.chiba-u.jp;
Further Information

Publication History

Received 27 June 2011
Publication Date:
23 November 2011 (online)

Abstract

Since the first report in 1991 of the regio- and stereoselective allylation of carbonyl compounds with allylic barium reagents, various barium reagents have been utilized in organic transformations. This account focuses on recent examples of barium reagent promoted regio- and stereoselective reactions, such as ­Barbier-type propargylations, a Reformatsky-type reaction, ­Michael additions, aldol reactions, Mannich-type reactions, a Friedel-Crafts-type alkylation, and a Diels-Alder-type reaction.

1 Introduction

2 Stoichiometric Use of Barium Reagents

2.1 Selective Propargylation of Electrophiles with Propargylic Bromides Promoted by Reactive Barium

2.1.1 Selective Propargylation of Carbonyl Compounds

2.1.2 Selective Propargylation of Imines

2.1.3 Selective Propargylation of Azo Compounds

2.2 Reformatsky-type Reaction of α-Chloro Ketones with ­Aldehydes Promoted by Reactive Barium

2.3 Barium Hydride Promoted Synthesis of 1,5-Diketones

2.3.1 Homocoupling of Enones

2.3.2 Cross-Coupling of Enones

3 Catalytic Use of Barium Reagents

3.1 Barium Alkoxide Catalyzed Synthesis of 1,5-Diketones

3.1.1 Reactions of Ketones with Aldehydes

3.1.2 Reactions of Ketones with Enones

3.2 Barium Alkoxide Catalyzed Direct Aldol Reaction

3.3 Barium Alkoxide Catalyzed Direct Mannich-type Reaction

3.4 Chiral Barium Alkoxide Catalyzed Asymmetric Friedel-Crafts-type Alkylation

3.5 Chiral Barium Alkoxide Catalyzed Asymmetric Diels-­Alder-type Reaction

4 Conclusion

    References

  • For reactions of allylic barium reagents, see:
  • 1a Yanagisawa A. Habaue S. Yamamoto H. J. Am. Chem. Soc.  1991,  113:  8955 
  • 1b Yanagisawa A. Habaue S. Yasue K. Yamamoto H. J. Am. Chem. Soc.  1994,  116:  6130 
  • For reviews, see:
  • 1c Yanagisawa A. Yamamoto H. In Active Metals. Preparation, Characterization, Applications   Fürstner A. VCH; Weinheim: 1996.  p.61 
  • 1d Yanagisawa A. In Science of Synthesis   Vol. 7:  Yamamoto H. Thieme; Stuttgart: 2004.  p.695 
  • 1e Yanagisawa A. In Main Group Metals in Organic Synthesis   Vol. 1:  Yamamoto H. Oshima K. Wiley-VCH; Weinheim: 2004.  p.175 
  • For related strontium reagents, see:
  • 1f Miyoshi N. Kamiura K. Oka H. Kita A. Kuwata R. Ikehara D. Wada M. Bull. Chem. Soc. Jpn.  2004,  77:  341 
  • 1g Miyoshi N. Ikehara D. Kohno T. Matsui A. Wada M. Chem. Lett.  2005,  34:  760 
  • 1h Miyoshi N. In Science of Synthesis   Vol. 7:  Yamamoto H. Thieme; Stuttgart: 2004.  p.685 
  • 1i Miyoshi N. Ikehara D. Matsuo T. Kohno T. Matsui A. Wada M.
    J. Synth. Org. Chem., Jpn.  2006,  64:  845 
  • For reviews on alkaline earth metal reagents, see:
  • 1j Alexander JS. Ruhlandt-Senge K. Eur. J. Inorg. Chem.  2002,  2761 
  • 1k Westerhausen M. Gärtner M. Fischer R. Langer J. Yu L. Reiher M. Chem. Eur. J.  2007,  13:  6292 
  • For a review on alkaline earth metal catalysts for asymmetric reactions, see:
  • 1l Kobayashi S. Yamashita Y. Acc. Chem. Res.  2011,  44:  58 
  • 2a Sell MS. Rieke RD. Synth. Commun.  1995,  25:  4107 
  • For reviews, see:
  • 2b Rieke RD. Sell MS. Klein WR. Chen T.-A. Brown JD. Hanson MV. In Active Metals. Preparation, Characterization, Applications   Fürstner A. VCH; Weinheim: 1996.  p.1 
  • 2c Rieke RD. Hanson MV. Tetrahedron  1997,  53:  1925 
  • 3 Yanagisawa A. Okitsu S. Arai T. Synlett  2005,  1679 
  • 4 Yanagisawa A. Suzuki T. Koide T. Okitsu S. Arai T. Chem. Asian J.  2008,  3:  1793 
  • 5 Yanagisawa A. Koide T. Yoshida K. Synlett  2010,  1515 
  • 6 Yanagisawa A. Takahashi H. Arai T. Chem. Commun. (Cambridge)  2004,  580 
  • 7 Yanagisawa A. Shinohara A. Takahashi H. Arai T. Synlett  2007,  141 
  • 8 Takahashi H. Arai T. Yanagisawa A. Synlett  2006,  2833 
  • 9 Yanagisawa A. Takahashi H. Arai T. Tetrahedron  2007,  63:  8581 
  • 10 Kazmaier U. Angew. Chem. Int. Ed.  2009,  48:  5790 
  • 11 Kobayashi S. Matsubara R. Chem. Eur. J.  2009,  15:  10694 
  • 12 Yamada YMA. Shibasaki M. Tetrahedron Lett.  1998,  39:  5561 
  • 13 Saito S. Kobayashi S. J. Am. Chem. Soc.  2006,  128:  8704 
  • 14 Yamaguchi A. Matsunaga S. Shibasaki M. J. Am. Chem. Soc.  2009,  131:  10842 
  • 15 Saito S. Tsubogo T. Kobayashi S. Chem. Commun. (Cambridge)  2007,  1236 
  • 16 Yamaguchi A. Aoyama N. Matsunaga S. Shibasaki M. Org. Lett.  2007,  9:  3387 
  • 17 Tsubogo T. Kano Y. Yamashita Y. Kobayashi S. Chem. Asian J.  2010,  5:  1974 
  • 18 Yamatsugu K. Yin L. Kamijo S. Kimura Y. Kanai M. Shibasaki M. Angew. Chem. Int. Ed.  2009,  48:  1070 
  • 19a Epsztein R. In Comprehensive Carbanion Chemistry   Buncel E. Durst T. Elsevier; New York: 1984.  Chap. 3. p.107 
  • 19b Yamamoto H. In Comprehensive Organic Synthesis   Vol. 2:  Trost BM. Fleming I. Heathcock CH. Pergamon; Oxford: 1991.  p.81 
  • 20a Marshall JA. Chem. Rev.  1996,  96:  31 
  • 20b Marshall JA. Chem. Rev.  2000,  100:  3163 
  • 20c Denmark SE. Fu J. Chem. Rev.  2003,  103:  2763 
  • 20d Ferreira F. Denichoux A. Chemla F. Bejjani J. Synlett  2004,  2051 
  • 20e Marshall JA. J. Org. Chem.  2007,  72:  8153 
  • 21 Yanagisawa A. Habaue S. Yamamoto H. J. Org. Chem.  1989,  54:  5198 
  • 22 Yanagisawa A. Habaue S. Yamamoto H. Tetrahedron  1992,  48:  1969 
  • 23 Kleinman EF. Volkmann RA. In Comprehensive Organic Synthesis   Vol. 2:  Trost BM. Fleming I. Heathcock CH. Pergamon; Oxford: 1991.  p.975 
  • 24a An DK. Hirakawa K. Okamoto S. Sato F. Tetrahedron Lett.  1999,  40:  3737 
  • 24b Waser J. González-Gómez JC. Nambu H. Huber P. Carreira EM. Org. Lett.  2005,  7:  4249 
  • 25a Fürstner A. Synthesis  1989,  571 
  • 25b Rathke MW. Weipert P. In Comprehensive Organic Synthesis   Vol. 2:  Trost BM. Fleming I. Heathcock CH. Pergamon; Oxford: 1991.  p.277 
  • 25c Fürstner A. In Organozinc Reagents   Knochel P. Jones P. Oxford University Press; New York: 1999.  p.287 
  • 26a Greeves N. In Comprehensive Organic Synthesis   Vol. 8:  Trost BM. Fleming I. Pergamon; Oxford: 1991.  p.1 
  • 26b Gawley RE. Zhang X. In Encyclopedia of Reagents for Organic Synthesis   Vol. 6:  Paquette LA. John Wiley & Sons; Chichester: 1995.  p.4238 
  • 26c Gawley RE. In Encyclopedia of Reagents for Organic Synthesis   Vol. 7:  Paquette LA. John Wiley & Sons; Chichester: 1995.  p.4568 
  • For typical examples, see:
  • 27a Gnaneshwar R. Wadgaonkar PP. Sivaram S. Tetrahedron Lett.  2003,  44:  6047 
  • 27b Miura K. Nakagawa T. Hosomi A. Synlett  2003,  2068 
  • 27c Nakagawa T. Fujisawa H. Nagata Y. Mukaiyama T. Bull. Chem. Soc. Jpn.  2005,  78:  236 
  • 28a Heathcock CH. In Comprehensive Organic Synthesis   Vol. 2:  Trost BM. Fleming I. Heathcock CH. Pergamon; Oxford: 1991.  p.133 
  • 28b Jung ME. In Comprehensive Organic Synthesis   Vol. 4:  Trost BM. Fleming I. Semmelhack MF. Pergamon; Oxford: 1991.  p.1 
  • 29 Modern Aldol Reactions   Vols. 1 and 2:  Mahrwald R. Wiley-VCH; Weinheim: 2004. 
  • 30 Geary LM. Hultin PG. Tetrahedron: Asymmetry  2009,  20:  131 
  • 31 Steinreiber J. Faber K. Griengl H. Chem. Eur. J.  2008,  14:  8060 
  • 32a Kobayashi S. Ishitani H. Chem. Rev.  1999,  99:  1069 
  • 32b Córdova A. Acc. Chem. Res.  2004,  37:  102 
  • 32c Friestad GK. Mathies AK. Tetrahedron  2007,  63:  2541 
  • 33a Jensen KB. Thorhauge J. Hazell RG. Jørgensen KA. Angew. Chem. Int. Ed.  2001,  40:  160 
  • 33b Evans DA. Scheidt KA. Fandrick KR. Lam HW. Wu J. J. Am. Chem. Soc.  2003,  125:  10780 
  • 33c Bandini M. Fagioli M. Melchiorre P. Melloni A. Umani-Ronchi A. Tetrahedron Lett.  2003,  44:  5843 
  • 33d Palomo C. Oiarbide M. Kardak BG. García JM. Linden A. J. Am. Chem. Soc.  2005,  127:  4154 
  • 33e Evans DA. Fandrick KR. Song H.-J. J. Am. Chem. Soc.  2005,  127:  8942 
  • 33f Yang H. Hong Y.-T. Kim S. Org. Lett.  2007,  9:  2281 
  • 33g Blay G. Fernández I. Pedro JR. Vila C. Org. Lett.  2007,  9:  2601 
  • 33h Desimoni G. Faita G. Toscanini M. Boiocchi M. Chem. Eur. J.  2008,  14:  3630 
  • 33i Singh PK. Singh VK. Org. Lett.  2008,  10:  4121 
  • 33j Boersma AJ. Feringa BL. Roelfes G. Angew. Chem. Int. Ed.  2009,  48:  3346 
  • 33k Wang W. Liu X. Cao W. Wang J. Lin L. Feng X. Chem. Eur. J.  2010,  16:  1664 
  • 34a Zhou W. Xu L.-W. Li L. Yang L. Xia C.-G. Eur. J. Org. Chem.  2006,  5225 
  • 34b Chen W. Du W. Yue L. Li R. Wu Y. Ding L.-S. Chen Y.-C. Org. Biomol. Chem.  2007,  5:  816 
  • 34c Bartoli G. Bosco M. Carlone A. Pesciaioli F. Sambri L. Melchiorre P. Org. Lett.  2007,  9:  1403 
  • 34d Tang H.-Y. Lu A.-D. Zhou Z.-H. Zhao G.-F. He L.-N. Tag C.-C. Eur. J. Org. Chem.  2008,  1406 
  • 34e Rueping M. Nachtsheim BJ. Moreth SA. Bolte M. Angew. Chem. Int. Ed.  2008,  47:  593 
  • 35 Corey EJ. Angew. Chem. Int. Ed.  2002,  41:  1650