Synthesis 2012(6): 881-884  
DOI: 10.1055/s-0031-1289701
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Azido-, Hydroxy- and Nitro-, Hydroxy-Functionalized Spherosilicates via Oxirane Ring-Opening Reactions

Micha Dutkiewicza, Hieronim Maciejewskia,b, Bogdan Marciniec*a,b
a Department of Organometallic Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland
b Poznań Science & Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań, Poland
Fax: +48(61)8291508; e-Mail: marcinb@amu.edu.pl;
Further Information

Publication History

Received 22 November 2011
Publication Date:
16 February 2012 (online)

Abstract

Azido functional silsesquioxanes are the natural extension of click chemistry and a convenient starting material for further synthesis of new POSS compounds as well as modification of other materials in 1,3-dipolar cycloaddition processes. Increasing demand for these compounds has stimulated the search for new and efficient methods for their synthesis. In this paper, we present characterization and methodology of synthesis of new POSS compounds bearing azido groups via epoxy ring-opening reaction in epoxy functional POSS compounds with sodium azide. Two new POSS derivatives with azido and hydroxy functionalities were obtained­ with a high selectivity and yield. Also two new nitro- and hydroxy-functionalized POSS derivatives were obtained in the reaction of epoxy-functionalized POSS compounds with 4-nitrophenol.

    References

  • 1a Baney RH. Itoh M. Sakakibara A. Suzuki T. Chem. Rev.  1995,  95:  1409 
  • 1b Gnanasekaran D. Madhavan K. Reddy BSR. J. Sci. Ind. Res.  2009,  68:  437 
  • 1c Cordes DB. Lickiss PD. Rataboul F. Chem. Rev.  2010,  110:  2081 
  • 2 Scriven EF. Turnbull K. Chem. Rev.  1988,  88:  297 
  • 3 Fabritz S. Heyl D. Bagutski V. Empting M. Rikowski E. Frauendorf H. Balog I. Fessner WD. Schneider JJ. Avrutina O. Kolmar H. Org. Biomol. Chem.  2010,  8:  2212 
  • 4 Clarke DJ. Matisons JG. Simon GP. Samoc M. Samoc A. Appl. Organomet. Chem.  2010,  24:  184 
  • 5 Zeng K. Zheng S. Macromol. Chem. Phys.  2009,  210:  783 
  • 6 Ervithayasuporn V. Wang X. Kawakami Y. Chem. Commun.  2009,  5130 
  • 7 Binder WH. Petraru L. Sachenshofer R. Zirbs R. Monatsh. Chem.  2006,  137:  835 
  • 8 Ge Z. Wang D. Zhou Y. Liu H. Liu S. Macromolecules  2009,  42:  2903 
  • 9 Trastoy B. Pérez-Ojeda ME. Sastre R. Chiara JL. Chem. Eur. J.  2010,  16:  3833 
  • 10 Ervithayasuporn V. Wang X. Gacal B. Gacal BN. Yagci Y. Kawakami Y. J. Organomet. Chem.  2011,  696:  2193 
  • 11 Falk B. Crivello JV. J. Appl. Polym. Sci.  2005,  97:  1574 
  • 12 Moses JE. Moorhouse AD. Chem. Soc. Rev.  2007,  36:  1249 
  • 13 Golas PL. Matyjaszewski K. Chem. Soc. Rev.  2010,  39:  1338 
  • 14a Huang JC. He CB. Xiao Y. Mya KY. Dai J. Siow YP. Polymer  2003,  44:  4491 
  • 14b Ni Y. Zheng S. Nie K. Polymer  2004,  45:  5557 
  • 14c Gao J. Li X. Wu W. Lin H. Polym. Compos.  2011,  32:  829 
  • 14d Miyazato A. Pakjamsai C. Kawakami Y. Dalton Trans.  2010,  39:  3239 
  • 15 Chen J. Loo LS. Wang K. Carbohydr. Polym.  2011,  86:  1151 
  • 16 Filho NLD. de Aquino HA. Pires G. Caetano L. J. Braz. Chem. Soc.  2006,  17:  533 
  • 17a Sellinger A. Laine RM. Chem. Mater.  1996,  8:  1592 
  • 17b Laine RM. Choi J. Lee I. Adv. Mater.  2001,  13:  800 
  • 18 Halila S. Manguian M. Fort S. Cottaz S. Hamaide T. Fleury E. Driguez H. Macromol. Chem. Phys.  2008,  209:  1282