Synlett 2012; 23(7): 959-972
DOI: 10.1055/s-0031-1289696
Account
© Georg Thieme Verlag Stuttgart · New York

Efficient H–D Exchange Reactions Using Heterogeneous Platinum-Group Metal on Carbon–H2–D2O System

Yoshinari Sawama
Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan, Fax: +81(58)2308109   Email: sajiki@gifu-pu.ac.jp
,
Yasunari Monguchi
Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan, Fax: +81(58)2308109   Email: sajiki@gifu-pu.ac.jp
,
Hironao Sajiki*
Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan, Fax: +81(58)2308109   Email: sajiki@gifu-pu.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 15 August 2011

Publication Date:
29 March 2012 (online)


This Account is dedicated to Dr. Yoshifumi Maki, Professor Emeritus at Gifu Pharmaceutical University, on the occasion of his 80th birthday.

Abstract

Deuterium-labeled compounds are widely utilized in various scientific fields. Although the H–D exchange reaction is a straightforward method to produce the deuterated organic compounds, it requires expensive deuterium (D2) gas and/or harsh reaction conditions in conventional methods. This Account summarizes platinum-group metal on carbon (e.g., Pd/C, Pt/C, Ru/C, Rh/C)-catalyzed efficient multi and/or site-selective H–D exchange methods of various compounds including bioactive molecules, such as amino acids, nucleic acids, pharmaceuticals, agrochemicals, and sugars, under neutral and H2-atmospheric conditions in D2O.

1 Introduction and Background

1.1 H–D Exchange Reaction under Acidic or Basic Conditions

1.2 Transition-Metal-Catalyzed H–D Exchange Reaction

1.3 H–D Exchange Reaction under Supercritical State or Hydrothermal Conditions

1.4 Other H–D Exchange Methods

2 Pd/C-Catalyzed H2–D2 Exchange Reaction

3 Site-Selective Benzylic Deuteration under Normal Pressure at Room Temperature

4 Multi H–D Exchange Reaction under Heat Conditions

4.1 Multi H–D Exchange Reaction of Alkyl-Substituted Aromatics

4.2 Multi H–D Exchange Reaction of Heterocyclic Compounds

4.3 Multi H–D Exchange Reaction of Aromatic Nuclei

4.4 Multi H–D Exchange Reaction Using a Mixture of Pd/C and Pt/C or Pd–Pt Hybrid Catalyst

5 H–D Exchange Reaction of Simple Alkanes

6 H–D Exchange Reaction of Alcohols

6.1 The Regioselective H–D Exchange at the α-Position of Aliphatic Alcohols

6.2 The Regio- and Stereoselective Deuterium Labeling of Sugars

7 Conclusion

 
  • References

  • 1 Urey HC, Brickwedde FG, Murphy GM. Phys. Rev. 1932; 40: 1
    • For examples, see:

    • 2a Tokuhisa S, Saisu K, Yoshikawa H, Tsuda T, Morishita T, Baba S. Chem. Pharm. Bull. 1978; 26: 3647
    • 2b Foster AB. Trends Pharmacol. Sci. 1984; 524
    • For examples, see:

    • 3a Murray S, Lynch AM, Knize MG, Gooderham NJ. J. Chromatogr. 1993; 616: 211
    • 3b Lewis RG, Fortune CR, Willis RD, Camann DE, Antley JT. Environ. Health Perspect. 1999; 107: 721
    • 3c Rudel RA, Camann DE, Spengler JD, Korn LR, Brody JG. Environ. Sci. Technol. 2003; 37: 4543
    • 3d Stokvis E, Rosing H, Beijnen JH. Rapid Commun. Mass Spectrom. 2005; 19: 401
    • For examples, see:

    • 4a Gardner KH, Kay LE. J. Am. Chem. Soc. 1997; 119: 7599
    • 4b Sack I, Balazs YS, Rahimipour S, Vega S. J. Am. Chem. Soc. 2000; 122: 12263
    • 4c Takeda M, Jee J, Ono A, Terauchi T, Kainosho M. J. Am. Chem. Soc. 2009; 131: 18556
    • For example, see:

    • 5a Lowry TH, Richardson KS. Mechanism and Theory in Organic Chemistry. Harper and Row; New York: 1987
    • 5b Furuta T, Takahashi H, Kasuya Y. J. Am. Chem. Soc. 1990; 112: 3633
    • 5c Porter DJ. T, Boyd FL. J. Biol. Chem. 1991; 266: 21616
    • 5d Chou M.-Y, Mandal AB, Leung M.-K. J. Org. Chem. 2002; 67: 1501
    • 5e Oh CH, Jung HH, Kim KS, Kim N. Angew. Chem. Int. Ed. 2003; 42: 805
    • 5f Marcus DM, Hayman MJ, Blau YM, Guenther DR, Ehresmann JO, Kletnieks PW, Haw JF. Angew. Chem. Int. Ed. 2006; 45: 1933
    • 5g Marcus DM, McLachlan KA, Wildman MA, Ehresmann JO, Kletnieks PW, Haw JF. Angew. Chem. Int. Ed. 2006; 45: 3133
    • 5h Perrin CL, Dong Y. J. Am. Chem. Soc. 2007; 129: 4490
    • 6a Russell TP, Karim A, Mansour A, Felcher GP. Macromolecules 1988; 21: 1890
    • 6b Tead SF, Kramer EJ, Russell TP, Volksen W. Polymer 1992; 33: 3382
    • 6c Okazaki M, Uchino N, Nozaki N, Kubo K. Bull. Chem. Soc. Jpn. 1995; 68: 1024
    • 6d Stoffel NC, Chandra S, Kramer EJ. Polymer 1997; 38: 5073
    • 6e Kondo A, Ishigure TKoike Y. J. Lightwave Technol. 2005; 23: 2443
  • 7 Suzuki Y, Korenaga T, Chikaraishi Y. Chem. Lett. 2006; 35: 532
  • 8 Davidova IA, Gieg LM, Nanny M, Kropp KG, Sufltia JM. Appl. Environ. Microbiol. 2005; 71: 8174
  • 9 Sanderson K. Nature (London) 2009; 458: 269
    • Recent reviews:

    • 10a Atzrodt J, Derdau V, Fey T, Zimmermann J. Angew. Chem. Int. Ed. 2007; 46: 7744
    • 10b Herbert JM. J. Labelled Compd. Radiopharm 2010; 53: 658
    • 11a Werstiuk NH, Kadai T. Can. J. Chem. 1974; 52: 2169
    • 11b Werstiuk NH, Timmins G. Can. J. Chem. 1981; 59: 3218
    • 11c Grose KR, Kim IS, Bjeldanes LF. J. Agric. Food Chem. 1982; 30: 766
    • 11d Gaston MH, Skidmore DR. Org. Prep. Proced. Int. 1985; 17: 138
    • 11e Werstiuk NH, Timmins G. Can. J. Chem. 1989; 67: 1744
    • 12a Kawazoe Y, Ohnishi M, Yoshioka Y. Chem. Pharm. Bull. 1964; 12: 1384
    • 12b Beak P, Monroe EM. J. Org. Chem. 1969; 34: 589
    • 12c Kawazoe Y, Ohnishi M, Yoshioka Y. Chem. Pharm. Bull. 1967; 15: 1225
    • 12d Feldman D, Halpern M, Rabinovitz M. J. Org. Chem. 1985; 50: 1746
    • 12e Castell JV, Martínez LA, Miranda MA, Tárrega P. J. Labelled Compd. Radiopharm. 1994; 34: 93
    • 12f Lygo B, Humphreys LD. Tetrahedron Lett. 2002; 43: 6677
  • 13 Chen T.-S, Wolinska-Mocydlarz J, Leitch LC. J. Labelled Compd. 1970; 6: 285
    • 14a Rubottom GM, Evain EJ. Tetrahdron 1990; 46: 5055
    • 14b Ogasawara M, Saburi M. Organometallics 1994; 13: 1911
    • 14c Collman JP, Fish HT, Wagenknecht PS, Tyvoll DA, Chng L.-L, Eberspacher TA, Brauman JI, Bacon JW, Pignolet LH. Inorg. Chem. 1996; 35: 6746
    • 15a Calf GE, Garnett JL. Chem. Commun. 1967; 306
    • 15b Weil TA, Friedman S, Wender I. J. Org. Chem. 1974; 39: 48
    • 15c Tsukinoki T, Ishimoto K, Mukumoto M, Suzuki M, Kawaji T, Nagano Y, Tsuzuki H, Mataka S, Tashiro M. J. Chem. Res., Synop. 1996; 66
    • 15d Mukumoto M, Tsuzuki H, Mataka S, Tashiro M, Tsukinoki T, Nagano Y. Chem. Lett. 1996; 165
    • 15e Lenges CP, Brookhart M, Grant BE. J. Organomet. Chem. 1997; 528: 199
    • 16a Seiwell LP. J. Am. Chem. Soc. 1974; 96: 7134
    • 16b Blake MR, Garnett JL, Gregor IK, Hannan W, Hoa K, Long MA. J. Chem. Soc., Chem. Commun. 1975; 930
    • 16c Rozzell JD. Tetrahedron Lett. 1982; 23: 1767
    • 16d Lockley WJ. S. Tetrahedron Lett. 1982; 23: 3819
    • 16e Blum J, Amer I, Vollhardt KP. C, Schwarz H, Hoehne G. J. Org. Chem. 1987; 52: 2804
    • 16f Hesk D, Jones JR, Lockley WJ. S. J. Pharm. Sci. 1991; 80: 887
    • 16g Takehara DK, Butt JB, Burwell RL. Jr. J. Catal. 1992; 113: 279
    • 16h Takehara DK, Butt JB, Burwell RL. Jr. J. Catal. 1992; 133: 294
    • 16i Lenges CP, White PS, Brookhart M. J. Am. Chem. Soc. 1999; 121: 4385
    • 16j Rybtchinski B, Cohen R, Ben-David Y, Martin JM. L, Milstein D. J. Am. Chem. Soc. 2003; 125: 11041
    • 17a Faller JW, Smart CJ. Organometallics 1989; 8: 602
    • 17b Heys R. J. Chem. Soc., Chem. Commun. 1992; 680
    • 17c Heys JR, Shu AY. L, Senderoff SG, Phillips NM. J. Labelled Compds. Radiopharm. 1993; 33: 431
    • 17d Hesk D, Das PR, Evans B. J. Labelled Compds. Radiopharm. 1995; 36: 497
    • 17e Lukey CA, Long MA, Garnett JL. Aust. J. Chem. 1995; 48: 79
    • 17f Golden JT, Andersen RA, Bergman RG. J. Am. Chem. Soc. 2001; 123: 5837
    • 17g Ellames GJ, Gibson JS, Herbert JM, Kerr WJ, McNeill AH. Tetrahedron Lett. 2001; 42: 6413
    • 17h Klei SR, Golden JT, Tilley TD, Bergman RG. J. Am. Chem. Soc. 2002; 124: 2092
    • 17i Hickey MJ, Jones JR, Kingston LP, Lockley WJ. S, Mather AN, McAuley BM, Wilkinson DJ. Tetrahedron Lett. 2003; 44: 3959
    • 17j Hickey MJ, Jones JR, Kingston LP, Lockley WJ. S, Mather AN, Wilkinson DJ. Tetrahedron Lett. 2004; 45: 8621
    • 17k Skaddan MB, Yung CM, Bergman RG. Org. Lett. 2004; 6: 11
    • 17l Yung CM, Skaddan MB, Bergman RG. J. Am. Chem. Soc. 2004; 126: 13033
    • 17m Garman RN, Hickey MJ, Kingston LP, McAuley B, Jones JR, Lockley WJ. S, Mather AN, Wilkinson DJ. J. Labelled Compd. Radiopharm. 2005; 48: 75
    • 17n Corberán R, Sanaú M, Peris E. J. Am. Chem. Soc. 2006; 128: 3974
    • 18a Macdonald CG, Shannon JS. Tetrahedron Lett. 1964; 45: 3351
    • 18b Wu GD, Serianni AS, Barker R. J. Org. Chem. 1983; 48: 1750
    • 18c Pojer PM. Tetrahedron Lett. 1984; 25: 2507
    • 18d Angyal SJ, Stevens JD. Carbohydr. Res. 1986; 157: 83
    • 18e Angyal SJ, Stevens JD. Carbohydr. Res. 1987; 169: 151
    • 18f Pathak T, Chattopadhyaya J. Tetrahedron 1987; 43: 4227
    • 18g Tsuzuki H, Mukumoto M, Mataka S, Yonemitsu T, Tashiro M. J. Chem. Res., Synop. 1993; 144
    • 19a Schrage K, Burwell RL. Jr. J. Am. Chem. Soc. 1966; 88: 4555
    • 19b Atkinson JG, Luke MO, Stuart RS. Can. J. Chem. 1967; 45: 1511
    • 19c Hsiao CY. Y, Ottaway CA, Wetlaufer DB. Lipids 1974; 9: 913
    • 19d Ofosu-Asante K, Stock LM. J. Org. Chem. 1986; 51: 5452
    • 19e Kiritani R, Asano T, Fujita S, Dohmaru T, Kawanishi T. J. Labelled Compd. Radiopharm. 1986; 23: 207
    • 19f Azran J, Shimoni M, Buchman O. J. Catal. 1994; 148: 648
    • 19g Hardacre C, Holbrey JD, McMath SE. J. Chem. Commun. 2001; 367
    • 20a Garnett JL, Sollich WA. Aust. J. Chem. 1961; 14: 441
    • 20b Garnett JL, Henderson LJ, Sollich WA, Tiers GV. D. Tetrahedron Lett. 1961; 15: 516
    • 20c Fraser RR, Renaud RN. J. Am. Chem. Soc. 1966; 88: 4365
    • 20d Garnett JL, Hodges RJ. J. Am. Chem. Soc. 1967; 89: 4546
    • 20e Garnett JL, Hodges RJ. Chem. Commun. 1967; 1001
    • 20f Gol’dshleger NF, Tyabin MB, Shilov AE, Shteinman AA. Zh. Fiz. Khim. 1969; 43: 1222
    • 20g Hodges RJ, Webster DE, Wells PB. J. Chem. Res. (A) 1971; 3230
    • 20h Hodges RJ, Webster DE, Wells PB. Chem. Commun. 1971; 462
    • 20i Garnett JL, Kenyon RS. J. Chem. Soc. D 1971; 1227
    • 20j Hodges RJ, Webster DE, Wells PB. J. Chem. Soc., Dalton Trans. 1972; 2571
    • 20k Hodges RJ, Webster DE, Wells PB. J. Chem. Soc., Dalton Trans. 1972; 2577
    • 20l Matsuo M, Matsuo T, Deguchi T, Kashida Y. Chem. Pharm. Bull. 1972; 20: 990
    • 20m Maeda M, Kawazoe Y. Tetrahedron Lett. 1975; 19: 1643
    • 20n Kramer PA, Masters C. J. Chem. Soc., Dalton Trans. 1975; 849
    • 20o Kiffen AA, Masters C, Raynand L. J. Chem. Soc., Dalton Trans. 1975; 853
    • 20p Maeda M, Ogawa O, Kawazoe Y. Chem. Pharm. Bull. 1977; 25: 3329
    • 20q Räisänen M, Kärkkäinen J. Acta Chem. Scand. B 1979; 33: 11
    • 20r Asscher Y, Ferraiolo B, Castagnoli NJr. J. Org. Chem. 1984; 49: 3138
    • 20s Buncel E, Clement O. J. Chem. Soc., Perkin Trans. 2 1995; 1333
    • 22a Yao J, Evilia RF. J. Am. Chem. Soc. 1994; 116: 11229
    • 22b Kuhlmann B, Arnett EM, Siskin M. J. Org. Chem. 1994; 59: 3098
    • 22c Junk T, Catallo WJ. Tetrahedron Lett. 1996; 37: 3445
    • 22d Yang Y, Evilia RF. J. Supercrit. Fluids 1996; 9: 161
    • 22e Junk T, Catallo WJ, Civils LD. J. Labelled Compd. Radiopharm. 1997; 39: 625
    • 22f Junk T, Catallo WJ, Elguero J. Tetrahedron Lett. 1997; 38: 6309
    • 22g Yang Y, Evilia RF. J. Supercrit. Fluids 1999; 15: 165
    • 22h Kalpala J, Hartonen K, Huhdanpää M, Riekkola M.-L. Green Chem. 2003; 5: 670
    • 23a Browne WR, O’Connor CM, Killeen JS, Guckian AL, Burke M, James P, Burke M, Vos JG. Inorg. Chem. 2002; 41: 4245
    • 23b Matsubara S, Yokota Y, Oshima K. Chem. Lett. 2004; 33: 294
    • 23c Yamamoto M, Oshima K, Matsubara S. Chem. Lett. 2004; 33: 846
    • 23d Yamamoto M, Yokota Y, Oshima K, Matsubara S. Chem. Commun. 2004; 1714
    • 23e Matsubara S, Yokota Y, Oshima K. Org. Lett. 2004; 6: 2071
    • 23f Yamamoto M, Oshima K, Matsubara S. Org. Lett. 2004; 6: 5015
    • 23g Yamamoto M, Oshima K, Matsubara S. Heterocycles 2006; 67: 353
  • 24 Faleev NG, Ruvinov SB, Saporovskaya MB, Belikov VM, Zakomyrdina LN, Sakharova IS, Torchinsky YM. Tetrahedron Lett. 1990; 31: 7051
    • For examples, see:

    • 25a Barthez JM, Filikov AV, Frederiksen LB, Huguet M.-L, Jones JR, Lu S.-Y. Can. J. Chem. 1998; 76: 726
    • 25b Elander N, Jones JR, Lu S.-Y, Stone-Elander S. Chem. Soc. Rev. 2000; 29: 239
    • 25c Fodor-Csorba K, Galli G, Holly S, Gács-Baitz E. Tetrahedron Lett. 2002; 43: 3789
    • 25d Takahashi M, Oshima K, Matsubara S. Chem. Lett. 2005; 34: 192
    • 25e Ishibashi K, Takahashi M, Yokota Y, Oshima K, Matsubara S. Chem. Lett. 2005; 34: 664
    • 25f Martins A, Lautens M. Org. Lett. 2008; 10: 4351
    • 26a Sajiki H, Kurita T, Esaki H, Aoki F, Maegawa T, Hirota K. Org. Lett. 2004; 6: 3521
    • 26b Kurita T, Aoki F, Mizumoto T, Maejima T, Esaki H, Maegawa T, Monguchi Y, Sajiki H. Chem. Eur. J. 2008; 14: 3371
    • 27a Hattori K, Sajiki H, Hirota K. Tetrahedron Lett. 2000; 41: 5711
    • 27b Hattori K, Sajiki H, Hirota K. Tetrahedron 2001; 57: 2109
  • 28 Corey EJ, Venkateswarlu A. J. Am. Chem. Soc. 1972; 94: 6190
    • 29a Sajiki H, Hattori K, Aoki F, Yasunaga K, Hirota K. Synlett 2002; 1149
    • 29b Kurita T, Hattori K, Seki S, Mizumoto T, Aoki F, Yamada Y, Ikawa K, Maegawa T, Monguchi Y, Sajiki H. Chem. Eur. J. 2008; 14: 664
  • 30 Pd/C(en) does not possess a catalyst activity toward the hydrogenation of many reducible functionalities including benzyl ethers and benzyl alcohols, see:  Hattori K, Sajiki H, Hirota K. Tetrahedron 2001; 57: 4817 ; and references cited therein
    • 31a Sajiki H, Aoki F, Esaki H, Maegawa T, Hirota K. Org. Lett. 2004; 6: 1485
    • 31b Maegawa T, Akashi A, Esaki H, Aoki F, Sajiki H, Hirota K. Synlett 2005; 845
    • 31c Sajiki H, Esaki H, Aoki F, Maegawa T, Hirota K. Synlett 2005; 1385
    • 31d Esaki H, Aoki F, Maegawa T, Hirota K, Sajiki H. Heterocycles 2005; 66: 361
    • 31e Esaki H, Ito N, Sakai S, Maegawa T, Monguchi Y, Sajiki H. Tetrahedron 2006; 62: 10954
    • 31f Esaki H, Aoki F, Umemura M, Kato M, Maegawa T, Monguchi Y, Sajiki H. Chem. Eur. J. 2007; 13: 4052
    • 31g Esaki H, Ohtaki R, Maegawa T, Monguchi Y, Sajiki H. J. Org. Chem. 2007; 72: 2143
    • 32a Sajiki H, Ito N, Esaki H, Maesawa T, Maegawa T, Hirota K. Tetrahedron Lett. 2005; 46: 6995
    • 32b Ito N, Esaki H, Maesawa T, Imamiya E, Maegawa T, Sajiki H. Bull. Chem. Soc. Jpn. 2008; 81: 278
  • 33 For example, see: Ostoja-Starzewski KA, White J. Transition Metal Catalyzed Polymerizations: Ziegler–Natta and Metathesis Polymerizations. Quirk RP. Cambridge University Press: New York: 1988
  • 34 Scott RW. J, Datye AK, Crooks RM. J. Am. Chem. Soc. 2003; 125: 3708
    • 35a Ito N, Watahiki T, Maesawa T, Maegawa T, Sajiki H. Adv. Synth. Catal. 2006; 348: 1025
    • 35b Ito N, Watahiki T, Maesawa T, Maegawa T, Sajiki H. Synthesis 2008; 1467
  • 36 Maegawa T, Ito N, Oono K, Monguchi Y, Sajiki H. Synthesis 2009; 2674
  • 37 Muto K, Maesawa T, Ito N, Watahiki T, Hirota K, Sajiki H. WO 2005113646, 2005
  • 38 Maegawa T, Fujiwara Y, Inagaki Y, Esaki H, Monguchi Y, Sajiki H. Angew. Chem. Int. Ed. 2008; 47: 5394
  • 39 Maegawa T, Fujiwara Y, Inagaki Y, Monguchi Y, Sajiki H. Adv. Synth. Catal. 2008; 350: 2215
  • 40 Fujiwara Y, Iwata H, Sawama Y, Monguchi Y, Sajiki H. Chem. Commun. 2010; 46: 4977
  • 41 For example, see: Bier DM, Arnold KJ, Sherman WH, Holland WH, Holmes WF, Kipnis DM. Diabetes 1977; 26: 1005
  • 42 Esaki H, Kurita T, Fujiwara Y, Maegawa T, Monguchi Y, Sajiki H. J. Synth. Org. Chem. Jpn. 2007; 65: 1179
  • 43 All reactions depicted in Sections 2–6 were quenched with H2O after the deuteration. Therefore, the OD, ND2, and CO2D functionalities were transformed to OH, NH2, and CO2H, respectively