Synthesis 2012(4): 648-652  
DOI: 10.1055/s-0031-1289672
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of a Benzophenone C-Nucleoside as Potential Triplet Energy and Charge Donor in Nucleic Acids

Michael Weinberger, Hans-Achim Wagenknecht*
Institute for Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
Fax: +49(721)60844825; e-Mail: wagenknecht@kit.edu;
Further Information

Publication History

Received 8 November 2011
Publication Date:
23 January 2012 (online)

Abstract

A synthetic route to the C-nucleoside that bears benzophenone as a DNA base substitution directly at the anomeric center of the 2′-deoxyribofuranoside was worked out. Furthermore, the α-anomer of this artificial nucleoside was converted synthetically into the corresponding DNA building block and incorporated into two representative oligonucleotides by automated phosphoramidite chemistry. The chromophore-modified DNA was characterized by methods of optical spectroscopy. The absorption band at ∼350 nm can be used for selective excitation of the benzophenone chromophore outside the nucleic acid absorption range, which makes the benzophenone nucleoside potentially useful for photochemical and photobiological applications.

    References

  • 1 See review: Fleming SA. Tetrahedron  1995,  51:  12479 
  • 2 See review: Dormán G. Prestwich GD. Biochemistry  1994,  33:  5661 
  • 3 Galardy RE. Craig LC. Jamieson JD. Printz MP. J. Biol. Chem.  1974,  249:  3510 
  • See reviews:
  • 4a Fagnoni M. Dondi D. Ravelli D. Albini A. Chem. Rev.  2007,  107:  2725 
  • 4b Ravelli D. Dondi D. Fagnoni M. Albini A. Chem. Soc. Rev.  2009,  38:  1999 
  • See reviews:
  • 5a Svoboda J. König B. Chem. Rev.  2006,  106:  5413 
  • 5b Wessig P. Angew. Chem. Int. Ed.  2006,  45:  2168 
  • 6a Müller C. Bauer A. Bach T. Angew. Chem. Int. Ed.  2009,  48:  6640 
  • 6b Müller C. Bauer A. Maturi MM. Cuquerella MC. Miranda MA. Bach T. J. Am. Chem. Soc.  2011,  133:  16689 
  • 7 Kauble DF. Lynch V. Krische MJ. J. Org. Chem.  2003,  68:  15 
  • 8 Bauer A. Westkämper F. Grimme S. Bach T. Nature  2005,  436:  1139 
  • 9a Lehmann TE. Berkessel A. J. Org. Chem.  1997,  62:  302 
  • 9b Lehmann TE. Müller G. Berkessel A. J. Org. Chem.  2000,  65:  2508 
  • 10 Paris C. Encinas S. Belmadoui N. Climent MJ. Miranda MA. Org. Lett.  2008,  10:  4409 
  • 11 Musier-Forsyth K. Schimmel P. Biochemistry  1994,  33:  773 
  • 12 Nakatani K. Yoshida T. Saito I. J. Am. Chem. Soc.  2002,  124:  2118 
  • 13 Nakatani K. Saito I. Top. Curr. Chem.  2004,  236:  163 
  • 14a Hoffer M. Chem. Ber.  1960,  93:  2777 
  • 14b Rolland V. Kotera M. Lhomme J. Synth. Commun.  1997,  27:  3505 
  • 14c Dhimitruka I. SantaLucia J. Synlett  2004,  335 
  • 14d Chin T.-M. Huang L.-K. Kan L.-S. J. Chin. Chem. Soc.  1997,  44:  413 
  • 15 Štambaský J. Hocek M. Kočovský P. Chem. Rev.  2009,  109:  6729 
  • 16 Mirjalili BF. Zolfigol MA. Bamoniri A. Hazar A. Bull. Korean Chem. Soc.  2004,  25:  1075 
  • 17 Adam W. Arnold MA. Nau WM. Pischel U. Saha-Möller CR. J. Am. Chem. Soc.  2002,  124:  3893 
  • 18a Douki T. Cadet J. Int. J. Radiat. Biol.  1999,  75:  571 
  • 18b Morin B. Cadet J. Photochem. Photobiol.  1994,  60:  102 
  • 19 Delatour T. Douki T. D’Ham C. Cadet J. Photochem. Photobiol.  1998,  44:  191 
  • 20 Hélène C. Charlier M. Biochimie  1971,  53:  1175 
  • 21 Lamola AA. J. Am. Chem. Soc.  1966,  88:  813 
  • 22 Jennings BH. Pastra S.-C. Wellington JL. Photochem. Photobiol.  1970,  11:  215