Synlett 2011(18): 2693-2696  
DOI: 10.1055/s-0031-1289543
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

An Ireland-Claisen Rearrangement/Lactonisation Cascade as a Key Step in Studies Towards the Synthesis of (-)-Euonyminol:

Matthew J. Webbera, Matthew Westonb, Damian M. Graingera,b, Stacy Lloyda, Sarah A. Warrena, Lyn Powellc, Alexander Alanined, Jeffrey P. Stonehousee, Christopher S. Framptonf, Andrew J. P. Whitea, Alan C. Spivey*a,b
a Department of Chemistry, South Kensington Campus, Imperial College, London SW7 2AZ, UK
Fax: +44(20)75945841; e-Mail: a.c.spivey@imperial.ac.uk;
b Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK
c AstraZeneca Process Research and Development, Charter Way, Silk Road Business Park, Macclesfield, Cheshire, SK10 2NA, UK
d F. Hoffmann-La Roche Ltd, Pharma Research & Early Development, pRED, Medicinal Chemistry, Grenzacherstraße, CH-4070 Basel, Switzerland
e AstraZeneca R and D, Charnwood, Department of Medicinal Chemistry, Bakewell Road, Loughborough, Leicestershire, LE11 5RH, UK
f Pharmorphix® Solid State Services, Sigma-Aldrich Group, 250 Cambridge Science Park, Milton Road, Cambridge, CB4 0WE, UK
Further Information

Publication History

Received 30 August 2011
Publication Date:
19 October 2011 (online)

Abstract

Progress towards the asymmetric total synthesis of (-)-euonyminol is described with the focus on the installation of the ­oxygenation pattern on the lower rim of the molecule. An Ireland-Claisen rearrangement/lactonisation cascade has been developed and studies towards further elaboration have uncovered an intriguing tunable diastereoselective α-bromination of the resulting γ-lactone.

    References and Notes

  • For reviews, see
  • 1a Spivey AC. Weston M. Woodhead S. Chem. Soc. Rev.  2002,  31:  43 
  • 1b Brinker AM. Ma J. Lipsky PE. Raskin I. Phytochemistry  2007,  68:  732 
  • For selected recent examples, see:
  • 2a Zhou G. Gao X. Li WZ. Li Y. Tetrahedron Lett.  2001,  42:  3101 
  • 2b Li WZ. Zhou G. Gao X. Li Y. Tetrahedron Lett.  2001,  42:  4649 
  • 2c Mehta G. Kumaran RS. Tetrahedron Lett.  2003,  44:  7055 
  • 2d Lee CA. Floreancig PE. Tetrahedron Lett.  2004,  45:  7193 
  • 2e Siwicka A. Cuperly D. Tedeschi L. Le Vézouet R. White AJP. Barrett AGM. Tetrahedron  2007,  63:  5903 
  • 3 Spivey AC. Woodhead SJ. Weston M. Andrews BI. Angew. Chem. Int. Ed.  2001,  40:  769 
  • 4 Beroza M. J. Am. Chem. Soc.  1953,  75:  44 
  • 5 Duan H. Takaishi Y. Imakura Y. Jia Y. Li D. Cosentino LM. Lee K.-H. J. Nat. Prod.  2000,  63:  357 
  • 6 Duan H. Takaishi Y. Bando M. Kido M. Imakura Y. Lee KH. Tetrahedron Lett.  1999,  40:  2969 
  • 7 Horiuch M. Murakami C. Fukamiya N. Yu D. Chen T.-H. Bastow KF. Zhang D.-C. Takaishi Y. Imakura Y. Lee KH. J. Nat. Prod.  2006,  69:  1271 
  • 8 White JD. Shin H. Kim T.-S. Cutshall NS. J. Am. Chem. Soc.  1997,  119:  2404 
  • 9 Ireland RE. Mueller RH. J. Am. Chem. Soc.  1972,  94:  5897 
  • 10 Hutchison JM. Hong S.-P. McIntosh MC. J. Org. Chem.  2004,  69:  4185 
  • 11 Oh K. Parsons PJ. Cheshire D. Synlett  2004,  2771 
  • 12 Thompson AL. Watkin DJ. Tetrahedron: Asymmetry  2009,  20:  712 
  • This selectivity is in contrast to other examples of cis-fused γ-lactone α-brominations that we are aware of in the literature, all of which are reported to give products resulting from approach of the electrophile from the least hindered convex face, see:
  • 13a Greene AE. Edgar MT. J. Org. Chem.  1989,  54:  1468 
  • 13b Greene AE. Muller J.-C. Ourisson G. Tetrahedron Lett.  1972,  2489 
  • 13c Greene AE. Muller J.-C. Ourisson G. J. Org. Chem.  1974,  39:  186 
  • 13d Alberto Marco J. Carda M. Tetrahedron  1987,  43:  2523 
  • 13e Shimoma F. Kusaka H. Azami H. Wada K. Suzuki T. Hagiwara H. Ando M. J. Org. Chem.  1998,  63:  3758 
  • 13f Huguchi Y. Shimoma F. Ando M. J. Nat. Prod.  2003,  66:  810 
  • 13g Crow JR. Thomson RJ. Mander LN. Org. Biomol. Chem.  2006,  4:  2532 
  • 13h Ando M. Wada T. Isogai K. J. Org. Chem.  1991,  56:  6235 
  • 13i

    The example most similar to ours involves the α-bromination of an α-(-)-santonin derivative (compound 19, see Supporting Information) for which the stereochemistry of the product was assigned by NOE (see ref. 13h). We repeated this reaction under both their conditions (LiCPh3, BrCH2CH2Br, 37% yield) and ours (TMSCl, LDA, NBS, 80% yield), obtained the same product 20 they report for both reactions, and confirmed the reported stereochemistry by a single crystal X-ray structure determination (see Supporting Information). Oxidation of lactone 19 also proceeded on the convex face to give α-hydroxylactone 21 (LDA, MoOPD, 62% yield; cf. Scheme  [4] ; see Supporting Information).

  • 15 Anderson JC. Smith SC. Synlett  1990,  107 
  • 16 Vedejs E. J. Am. Chem. Soc.  1974,  96:  5944 
  • 17 Osamu H. Takizawa J.-I. Yamatake T. Makino K. Hamada Y. Tetrahedron Lett.  1999,  40:  7787 
  • 18 Shi Y.-J. Hughes DL. McNamara JM. Tetrahedron Lett.  2003,  44:  3609 
14

Stereochemical assignments were made based upon NMR spectroscopic comparisons with bromolactones 9a and 15b for which X-ray structural data were obtained (see Supporting Information).

19

Product 18 was not fully characterised due to lack of material and this line of investigation has not been pursued further to allow verification of the stereochemistry at C-11.