Synlett 2011(18): 2719-2724  
DOI: 10.1055/s-0031-1289540
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Fragment-Based Reaction Discovery of Non-Ene-Type Carbon-Carbon Bond-Forming Reactions: Catalytic Asymmetric Oxetane Synthesis by Screening Olefinic Reactants without Allylic Hydrogen

Koichi Mikami*, Kohsuke Aikawa, Junpei Aida
Department of Applied Chemistry, Tokyo Institute of Technology, Tokyo 152-8552, Japan
Fax: +81(3)57342776; e-Mail: mikami.k.ab@m.titech.ac.jp;
Weitere Informationen

Publikationsverlauf

Received 26 August 2011
Publikationsdatum:
19. Oktober 2011 (online)

Abstract

Through fragment-based reaction discovery, catalytic asymmetric [2+2] cycloaddition was found to produce oxetanes from trifluoropyruvate and olefinic reactants without allylic hydrogen. This non-ene-type carbon-carbon bond-forming reaction smoothly proceeded under the influence of chiral Pd or Cu complexes as Lewis acid catalysts. The [2+2] cycloaddition afforded the oxetane derivatives in high yields and enantioselectivities even under 0.1 mol% catalyst loading and solvent-free conditions.

    References and Notes

  • 1a Comprehensive Asymmetric Catalysis I-III   Jacobsen EN. Pfaltz A. Yamamoto H. Springer; Berlin: 1999. 
  • 1b New Frontiers in Asymmetric Catalysis   Mikami K. Loutens M. Wiley; New York: 2007. 
  • 1c Catalytic Asymmetric Synthesis   3rd ed.:  Ojima I. Wiley; New Jersey: 2010. 
  • 2a Mikami K. Shimizu M. Chem. Rev.  1992,  92:  1021 
  • 2b Mikami K. Aikawa K. In Catalytic Asymmetric Synthesis   3rd ed.:  Ojima I. Wiley; New Jersey: 2010.  p.683-737  
  • ‘Fragment-based drug discovery’:
  • 3a Hajduk PJ. Nature  2011,  470:  42 
  • 3b Murray CW. Rees DC. Nat. Chem.  2009,  1:  187 
  • 3c Fragment-Based Drug Discovery: A Practical Approach   Zartler ER. Shapiro M. Wiley; Weinhein: 2008. 
  • 3d Fragment-Based Approaches in Drug Discovery   Jahnke W. Erlanson DA. Wiley-VCH; Weinhein: 2006. 
  • 3e Nienaber VL. Richardson PL. Klighofer V. Bouska JJ. Giranda VL. Greer J. Nat. Biotechnol.  2000,  18:  1105 
  • 3f Shuker SB. Hajduk PJ. Meadows RP. Fesik SW. Science  1996,  274:  1531 
  • SEGPHOS- and BINAP-Pd-catalyzed carbonyl-ene reaction of olefinic reactants with allylic hydrogen with trifluoro-pyruvate:
  • 4a Aikawa K. Kainuma S. Hatano M. Mikami K. Tetrahedron Lett.  2004,  45:  183 
  • 4b BINAP-Pd-catalyzed carbonyl-ene reaction with glyoxylate: Hao J. Hatano M. Mikami K. Org. Lett.  2000,  2:  405 
  • BINOL-Ti-catalyzed carbonyl-ene reaction with glyoxy-late:
  • 5a Mikami K. Terada M. Nakai T. J. Am. Chem. Soc.  1989,  111:  1940 
  • 5b Mikami K. Terada M. Nakai T. J. Am. Chem. Soc.  1990,  112:  3949 ; However, even with glyoxylate or fluoral, which are reactive carbonyl substrates in the ene reactions, the [2+2] or [2+2+2] reactions did not proceed
  • For Box-Cu-catalyzed carbonyl-ene reaction with glyoxylate, see:
  • 6a Evans DA. Burgey CS. Paras NA. Vojkovsky T. Tregay SW. J. Am. Chem. Soc.  1998,  120:  5824 
  • 6b Evans DA. Tregay SW. Burgey CS. Paras NA. Vojkovsky T. J. Am. Chem. Soc.  2000,  122:  7936 
  • 7a Shimada N. Hasegawa S. Harada T. Tomisawa T. Fujii A. Takita T. J. Antibiot.  1986,  39:  1623 
  • 7b Nishiyama S. Yamamura S. Kato K. Takita T. Tetrahedron Lett.  1988,  29:  4743 
  • 8 For a review on the biological activity of oxetin, see: Omura S. J. Antibiot.  1984,  37:  1324 
  • 9 For a minireview on oxetanes, see: Burkhard JA. Wuitschik G. Rogers-Evans M. Müller K. Carreira EM. Angew. Chem. Int. Ed.  2010,  49:  9052 
  • For reviews, see:
  • 10a Mikami K. Itoh Y. Yamanaka M. Chem. Rev.  2006,  104:  1 
  • 10b Ma J.-A. Cahard D. J. Fluorine Chem.  2007,  128:  975 
  • 10c Billard T. Langlois BR. Eur. J. Org. Chem.  2007,  891 
  • 10d Shibata N. Mizuta S. Kawai H. Tetrahedron: Asymmetry  2008,  19:  2633 
  • 10e Ma J.-A. Cahard D. Chem. Rev.  2008,  108:  PR1 
  • 10f Zheng Y. Ma J.-A. Adv. Synth. Catal.  2010,  352:  2745 
  • 10g Nie J. Guo H.-C. Cahard D. Ma J.-A. Chem. Rev.  2011,  111:  455 
  • 11 A similar [2+2+2] cyclization of ketene acetals has been reported for the Box-Cu-catalysts, see: Audrain H. Jørgensen KA. J. Am. Chem. Soc.  2000,  122:  11543 
  • 12 Morano I. McNamara JP. Hillier IH. J. Am. Chem. Soc.  2003,  125:  628 
13

Crystal data for 16: C21H27F3N2O5; orthorhombic; space group P212121; a = 6.3390 (11) Å, b = 17.252 (3) Å, c = 20.143 (4) Å; V = 2202.9 (7) ų; Z = 4; D calc = 1.340 Mgm; µ = 0.112 mm. All measurements were made
with a Bruker APEXII CCD area detector with graphite monochromated Mo-Kα radiation at 93 K. Of the 9577 reflections that were collected, 3935 were unique (R int = 0.0329). R 1 = 0.0716, wR = 0.1805, goodness of fit = 1.052; Flack Parameter = 0.1 (13), shift/error = 0.000. CCDC-838360 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

14

Enantioselective [2+2] Cycloaddition Catalyzed by ( S , S )- t -Bu-Box-Cu(2) (Table 2, entry 1); Typical Procedure: (S,S)-t-Bu-Box-Cu(OTf)2 catalyst was prepared by the addition of Cu(OTf)2 (3.6 mg, 0.01 mmol) to (S,S)-2,2′-isopropylidenebis(4-tert-butyl-2-oxazoline) (3.2 mg, 0.011 mmol) under an argon atmosphere. The mixture was dried under vacuum for 1 h, then Et2O (1.0 mL) was added under an argon atmosphere and the resulting suspension was stirred vigorously for 1 h at r.t. To the solution at -40 ˚C were added ethyl trifluoropyruvate 3 (26.5 µL, 0.2 mmol) followed by tri(isopropyl)silyl enol ether (9a; 20.0 mg, 0.1 mmol). After stirring at -40 ˚C for 2.5 h, the reaction mixture was directly loaded onto a short silica gel column (hexane-EtOAc, 1:1) to remove the catalyst. The solution was evaporated under reduced pressure. Purification by silica-gel chromatography (hexane-EtOAc, 20:1) gave the corresponding oxetane 11a (84% yield) as a clear liquid. The cis/trans ratio was determined by ¹9F NMR analysis (cis/trans, 99:1; the major configuration of the oxetane products was determined to be cis from the results of NOE experiments, which are summarized in Scheme  [4] ).
(2 S ,4 R )-Ethyl 2-Trifluoromethyl-4-(triisopropylsiloxy)-oxetane-2-carboxylate (11a): ¹H NMR (300 MHz, CDCl3): δ = 1.06 (m, 21 H), 1.33 (t, J = 7.2 Hz, 3 H), 2.82 (dd, J = 12.6, 4.2 Hz, 1 H), 3.11 (dd, J = 12.6, 5.1 Hz, 1 H), 4.33 (q, J = 7.2 Hz, 2 H), 5.90 (dd, J = 5.1, 4.2 Hz, 1 H); ¹³C NMR (75.5 MHz, CHCl3): δ = 11.8, 13.9, 17.5, 37.6 (q, J C-F = 0.8 Hz), 62.6, 76.1 (q, J C-F = 33.2 Hz), 95.7, 122.3 (q, J C-F = 283.1 Hz), 167.6; ¹9F NMR (282 MHz, CDCl3): δ = -79.0 (s, 3 F); FTIR (neat): 2947, 2896, 2870, 1751, 1466, 1390, 1286, 1187, 1113, 1039, 919, 883, 685 cm; HRMS (APCI-TOF): m/z [M + H]+ calcd for C16H29F3O4Si: 371.1865; found: 371.1889; [α]D ²4 -4.48 (c 1.08, CHCl3) for 98% ee (cis/trans = 99:1); GC (column, CP-Chirasil-Dex CB, i.d. 0.25 mm × 25 m, CHROMPACK; carrier gas, nitrogen 75 kPa; column temp. 120 ˚C; injection and detection temp. 150 ˚C): t R = 36.2 (major isomer), 38.3 (minor isomer) min.
(2 S ,3 R ,4 R )-Ethyl 3-Benzyloxymethyl-2-trifluoromethyl-4-(triisopropylsiloxy)oxetane-2-carboxylate (11g): ¹H NMR (300 MHz, CDCl3): δ = 1.07 (m, 21 H), 1.31 (t, J = 7.2 Hz, 3 H), 3.62 (ddd, J = 9.6, 5.7, 4.2 Hz, 1 H), 3.75 (dd, J = 9.6, 4.2 Hz, 1 H), 4.13 (dd, J = 9.6, 9.6 Hz, 2 H), 4.32 (m, 2 H, OCH 2CH3), 4.46 (d, J = 18.6 Hz, 1 H), 4.50 (d, J = 18.6 Hz, 1 H), 5.96 (d, J = 5.7 Hz, 1 H), 7.29 (m, 5 H); ¹³C NMR (75.5 MHz, CDCl3): δ = 11.8, 13.9, 17.5, 47.5, 62.6, 63.1 (q, J C-F = 2.3 Hz), 73.4, 80.3 (q, J C-F = 32.5 Hz), 97.3, 122.2 (q, J C-F = 285.4 Hz), 127.7, 127.8, 128.3, 137.7, 167.5; ¹9F NMR (282 MHz, CDCl3): δ = -72.8 (s, 3 F); FTIR (neat): 2947, 2869, 1750, 1656, 1466, 1278, 1200, 1091, 1028, 883, 688 cm; HRMS (ESI-TOF): m/z [M + Na]+ calcd for C24H37F3NaO5Si: 513.2260; found: 513.2281; [α]D ²5 +30.68 (c 1.39, CHCl3) for 90% ee (cis/trans = 97:3); HPLC (column, CHIRALPAK AS-H, Hexane/2-Propanol = 97/3, flow rate 0.6 mL/min, 20 ˚C, detection, UV 218 nm): t R = 33.6 ( minor isomer), 41.5 (major isomer) min.
Enantioselective [2+2] Cycloaddition Catalyzed by ( S )-BINAP-Pd(1b) (Table 2, entry 3); Typical Procedure:
To a solution of PdCl2[(S)-BINAP] (8.0 mg, 0.01 mmol) in toluene (1.0 mL) was added AgSbF6 (7.6 mg, 0.022 mmol) at r.t. under an argon atmosphere. After stirring for 30 min, ethyl trifluoropyruvate 3 (26.5 µL, 0.2 mmol) and freshly distilled vinyl acetate 9h (9.3 µL, 0.1 mmol) were added to the mixture at -20 ˚C. After stirring at -20 ˚C for 15 h, Et3N (50 µL) was added and the mixture was directly loaded onto a short silica gel column (hexane-EtOAc, 1:1) to remove the catalyst. The solution was evaporated under reduced pressure. Purification by silica-gel chromatography (hexane-EtOAc, 4:1) gave the corresponding oxetane product 11h as a clear liquid (88% yield). The diastereo-meric ratio was determined by ¹9F NMR analysis (dr = 77:23).
Enantioselective [2+2] Cycloaddition Catalyzed by ( S )-BINAP-Pd(1b) under Solvent-Free Conditions (Table 2, entry 7): To a solution of PdCl2[(S)-BINAP] (4.0 mg, 0.005 mmol) in ethyl trifluoropyruvate 3 (1.3 mL, 10 mmol) was added silver hexafluoroantimonate (3.8 mg, 0.011 mmol) at r.t. under an argon atmosphere. After stirring for 30 min, freshly distilled vinyl acetate 9h (461 µL, 5 mmol) was added to the mixture at -20 ˚C. After stirring at -20 ˚C for 48 h, Et3N (50 µL) was added and the mixture was directly loaded onto a short silica gel column (hexane-EtOAc, 1:1) to remove the catalyst. The solution was evaporated under reduced pressure. Purification by silica gel chromatography (hexane-EtOAc, 4:1) gave the corresponding oxetane product 11h as a clear liquid (86% yield). The diastereo-meric ratio was determined by ¹9F NMR analysis (dr = 92:8).
(2 R )-Ethyl 4-Acetoxy-2-(trifluoromethyl)oxetane-2-carboxylate (11h): ¹H NMR (300 MHz, CDCl3): δ = 1.33 (t, J = 7.2 Hz, 3 H), 2.12 (s, 3 H), 3.04 (ddq, J = 13.2, 4.2 Hz, J H-F = 0.6 Hz, 1 H), 3.27 (dd, J = 13.2, 5.4 Hz, 1 H), 4.36 (q, J = 7.2 Hz, 2 H), 6.48 (dd, J = 5.4, 4.2 Hz, 1 H); ¹³C NMR (75.5 MHz, CDCl3): δ = 13.6, 20.5, 33.4, 62.8, 78.1 (q, J C-F = 34.0 Hz), 93.4, 122.7 (q, J C-F = 283.1 Hz), 165.4, 168.8; ¹9F NMR (282.4 MHz, CDCl3): δ = -79.4 (s, 3 F, major isomer), -79.3 (s, 3 F, minor isomer); FTIR (neat): 2990, 1764, 1447, 1371, 1308, 1219, 1096, 1037, 961, 679 cm; HRMS (APCI-TOF): m/z [M + H]+ calcd for C9H11F3O5: 257.0637; found: 257.0680; [α]D ²5 +42.97 (c 1.21, CHCl3) for 98% ee/94% ee (dr = 85:15); GC (column, CP-Chirasil-Dex CB, i.d. 0.25 mm × 25 m, CHROMPACK; carrier gas, nitrogen 75 kPa; column temp 85 ˚C; injection and detection temp, 115 ˚C): t R = 20.0 ( major isomer), 22.0 (minor isomer) min.