Synlett 2011(17): 2437-2442  
DOI: 10.1055/s-0031-1289520
SYNPACTS
© Georg Thieme Verlag Stuttgart ˙ New York

Buchner and Beyond: Arene Cyclopropanation as Applied to Natural Product Total Synthesis

Sarah E. Reisman*, Roger R. Nani, Sergiy Levin
The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineer­ing, California Institute of Technology, Pasadena, California 91125, USA
Fax: +1(626)3958436; e-Mail: reisman@caltech.edu;
Further Information

Publication History

Received 25 April 2011
Publication Date:
06 October 2011 (online)

Abstract

Buchner and Curtius first reported the cyclopropanation of arenes in 1885. Since the initial discovery, the Buchner reaction has been the subject of significant research by both physical and synthetic organic chemists. Described herein is a brief overview of the Buchner reaction and related arene cyclopropanation processes, with an emphasis on their application to natural product total synthesis.

    References and Notes

  • 1a Buchner E. Curtius T. Ber. Dtsch. Chem. Ges.  1885,  2377 
  • 1b Buchner E. Ber. Dtsch. Chem. Ges.  1896,  106 
  • 2 Doering WVE. Laber G. Vonderwahl R. Chamberlain NF. Williams RB. J. Am. Chem. Soc.  1956,  78:  5448 
  • Two other groups also proposed that the Buchner reaction provides cycloheptatriene products; however, Doering’s report ² was the first to confirm this assignment by ¹H NMR. See:
  • 3a DeJong AWK. Recl. Trav. Chim.  1937,  198 
  • 3b Grundmann C. Ottmann G. Justus Liebigs Ann. Chem  1953,  163 
  • Reviews:
  • 4a Maier G. Angew. Chem., Int. Ed. Engl.  1967,  6:  402 
  • 4b McNamara OA. Maguire AR. Tetrahedron  2011,  67:  9 
  • 5First direct observation of bicyclo[4.1.0]hepta-2,4-diene:
  • 5 Rubin MB. J. Am. Chem. Soc.  1981,  103:  7791 
  • 6 Wehner R. Guenther H. J. Am. Chem. Soc.  1975,  97:  923 
  • 7For an early example see:
  • 7 Ciganek E. J. Am. Chem. Soc.  1967,  89:  1454 
  • For early examples, see:
  • 8a Prinzbach H. Fischer U. Cruse R. Angew. Chem., Int. Ed. Engl.  1966,  5:  251 
  • 8b Ganter C. Roberts JD. J. Am. Chem. Soc.  1966,  88:  741 
  • 9a Vogel E. Roth HD. Wiedeman W. Gunther H. Eimer J. Justus Liebigs Ann. Chem.  1972,  1 
  • 9b Roth WR. Klarner FG. Siepert G. Lennartz HW. Chem. Ber.  1992,  125:  217 
  • 10a Pommer H. Angew. Chem.  1950,  62:  281 
  • 10b Bartels-Keith JR. Johnson AW. Taylor WI. J. Chem. Soc.  1951,  2352 
  • 11a Scott LT. Chem. Commun.  1973,  22:  882 
  • 11b Scott LT. Minton MA. Kirms MA. J. Am. Chem. Soc.  1980,  102:  6311 
  • 12a Anciaux AJ. Demonceau A. Hubert AJ. Noels AF. Petiniot N. Teyssie P. Chem. Commun.  1980,  16:  765 
  • 12b Anciaux AJ. Demonceau A. Noels AF. Hubert AJ. Warin R. Teyssie P. J. Org. Chem.  1981,  46:  873 
  • Copper and rhodium are the most commonly employed catalysts, however, silver and iron catalysts have also been reported. Silver:
  • 13a Lovely CJ. Browning RG. Badarinarayana V. Dias HVR. Tetrahedron Lett.  2005,  46:  2453 
  • Iron:
  • 13b Mbuvi HM. Woo LK. J. Porphyrins Phthalocyanines  2009,  13:  136 
  • Reviews:
  • 14a Doyle MP. McKervey MA. Ye T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds   John Wiley and Sons; New York: 1998.  p.298 
  • 14b Ye T. Mckervey MA. Chem. Rev.  1994,  94:  1091 
  • 14c Merlic CA. Zechman AL. Synthesis  2003,  1137 
  • 14d Foley DA. Maguire AR. Tetrahedron  2011,  67:  1131 
  • 15a McKervey MA. Tuladhar SM. Twohig MF. Chem. Commun.  1984,  2:  129 
  • 15b Kennedy M. McKervey MA. Maguire AR. Tuladhar SM. Twohig MF. J. Chem. Soc., Perkin Trans. 1  1990,  4:  1047 
  • 15c Maguire AR. O’Leary P. Harrington F. Lawrence SE. Blake AJ.
    J. Org. Chem.  2001,  66:  7166 
  • 16a Pusino A. Saba A. Rosnati V. Tetrahedron  1986,  42:  4319 
  • 16b Doyle MP. Shanklin MS. Pho HQ. Tetrahedron Lett.  1988,  29:  2639 
  • 16c Moody CJ. Miah S. Slawin AMZ. Mansfield DJ. Richards IC.
    J. Chem. Soc., Perkin Trans. 1  1998,  24:  4067 
  • 17 Padwa A. Austin DJ. Price AT. Semones MA. Doyle MP. Protopopova MN. Winchester WR. Tran A. J. Am. Chem. Soc.  1993,  115:  8669 
  • 18a Wee AGH. Liu B. Zhang L. J. Org. Chem.  1992,  57:  4404 
  • 18b Padwa A. Austin DJ. Price AT. Semones MA. Doyle MP. Protopopova MN. Winchester WR. Tran A. J. Am. Chem. Soc.  1993,  115:  8669 
  • 19 Kennedy M. McKervey MA. J. Chem. Soc., Perkin Trans. 1  1991,  10:  2565 
  • 20a Frey B. Wells AP. Rogers DH. Mander LN. J. Am. Chem. Soc.  1998,  120:  1914 
  • 20b Frey B. Wells AP. Roden F. Au TD. Hockless DC. Willis AC. Mander LN. Aust. J. Chem.  2000,  53:  819 
  • 21Manderand colleagues subsequently reported an alternative approach to the related natural product harringtonolide:
  • 21 Zhang H. Appels DC. Hockless DDR. Mander LN. Tetrahedron Lett.  1998,  39:  6577 
  • 22 Taber DF. Ruckle RE. J. Am. Chem. Soc.  1986,  108:  7686 
  • 23a Rogers DH. Morris JC. Roden FS. Frey B. King GR. Russkamp F.-W. Bell RA. Mander LN. Pure Appl. Chem.  1996,  68:  515 
  • 23b Morris JC. Mander LN. Hockless DCR. Synthesis  1998,  455 
  • 24 King GR. Mander LN. Monck NJT. Morris JC. Zhang HB. J. Am. Chem. Soc.  1997,  119:  3828 
  • 25 Aoyagi Y. Yamazaki A. Nakatsugawa C. Fukaya H. Takeya K. Kawauchi S. Izumi H. Org. Lett.  2008,  10:  4429 
  • 26 Levin S. Nani RR. Reisman SE. Org. Lett.  2010,  12:  780 
  • 29 Levin SL. Nani RR. Reisman SE. J. Am. Chem. Soc.  2011,  133:  774 
  • 30a Boeckman RK. Flann CJ. Poss KM. J. Am. Chem. Soc.  1985,  107:  4359 
  • 30b Boeckman RK. Shair MD. Vargas JR. Stolz LA. J. Org. Chem.  1993,  58:  1295 
  • 30c Boeckman RK. Reeder MR. J. Org. Chem.  1997,  62:  6456 
  • 30d Boeckman RK. Zhang J. Reeder MR. Org. Lett.  2002,  4:  3891 
  • 32a Doyle MP. Ene DG. Forbes DC. Pillow TH. Chem. Commun.  1999,  17:  1691 
  • 32b O’Keeffe S. Harrington F. Maguire AR. Synlett  2007,  2367 
  • 32c O’Neill S. O’Keeffe S. Harrington F. Maguire AR. Synlett  2009,  2312 
27

Cyclopentanones i and ii were determined to be the major byproducts (Figure  [²] ).

28

Substrates 35b and 35c were screened against an array of rhodium and copper catalysts; Table  [¹] , entries 9 and 10 represent the best catalysts identified for the formation of 36b and 36c, respectively.

31

Ketoaldehyde iii (Figure  [³] ) is also formed in 36% yield; iii can be converted into 32 using catalytic Rh(cod)Cl2 and diphenylphosphinopropane. See: Phan D. H. T., Kim B., Dong V. M.; J. Am. Chem. Soc.; 2009, 131: 156