Klin Padiatr 2011; 223(06): 326-331
DOI: 10.1055/s-0031-1287842
Rapid Communication
© Georg Thieme Verlag KG Stuttgart · New York

Detection of Neuroblastoma Cells During Clinical Follow Up: Advanced Flow Cytometry and RT-PCR for Tyrosine Hydroxylase Using Both Conventional and Real-Time PCR

Detektion von Neuroblastomzellen im klinischen Verlauf: Erweiterte Durchflusszytometrie und RT-PCR für Tyrosinhydroxylase mit konventioneller und Real-time-PCR
R. Esser
1   Pädiatrische Hämatologie und Onkologie, Universitätsklinik Frankfurt, Germany
,
W. Glienke
2   Innere Medizin, Universitätsklinik Frankfurt, Germany
,
K. Bochennek
1   Pädiatrische Hämatologie und Onkologie, Universitätsklinik Frankfurt, Germany
,
S. Erben
1   Pädiatrische Hämatologie und Onkologie, Universitätsklinik Frankfurt, Germany
,
A. Quaiser
1   Pädiatrische Hämatologie und Onkologie, Universitätsklinik Frankfurt, Germany
,
C. Pieper
3   Zentrum für Kinder- und Jugendmedizin, Kinderheilkunde III, Universitätsklinikum Essen, Germany
,
A. Eggert
3   Zentrum für Kinder- und Jugendmedizin, Kinderheilkunde III, Universitätsklinikum Essen, Germany
,
A. Schramm
3   Zentrum für Kinder- und Jugendmedizin, Kinderheilkunde III, Universitätsklinikum Essen, Germany
,
K. Astrahantseff
3   Zentrum für Kinder- und Jugendmedizin, Kinderheilkunde III, Universitätsklinikum Essen, Germany
,
M. Hansmann
4   Pathologie, Universitätsklinik Frankfurt, Germany
,
D. Schwabe
1   Pädiatrische Hämatologie und Onkologie, Universitätsklinik Frankfurt, Germany
,
T. Klingebiel
1   Pädiatrische Hämatologie und Onkologie, Universitätsklinik Frankfurt, Germany
,
U. Koehl
1   Pädiatrische Hämatologie und Onkologie, Universitätsklinik Frankfurt, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
17. November 2011 (online)

Abstract

Purpose:

Real-time reverse-transcriptase PCR (RT-qPCR) or conventional RT-PCR (RT-cPCR) detection of tyrosine hydroxylase (TH) is increasingly used to detect neuroblastoma (NB) cells in clinical samples. However, TH expression in normal tissues can limit its usefulness and make additional diagnostic strategies necessary.

Methods:

We analysed TH in 857 tumour, bone marrow aspirate and peripheral blood stem cell samples from 65 NB patients using RT-cPCR, and compared results from 666 samples analysed by RT-qPCR. TH was investigated in 84 samples from patients with other diagnoses and 354 samples from healthy donors as controls, and 132 samples from the entire collection were evaluated for NB cells using 5-colour flow cytometry (FC).

Results:

Cohen’s kappa coefficient demonstrated a substantial agreement between RT-cPCR and RT-qPCR as well as RT-cPCR and FC and a moderate agreement between RT-qPCR and FC. TH expression was also detected in samples from individual patients with Ewing sarcoma, nephroblastoma and rhabdomyosarcoma, but not from healthy donors. FC panels were an effective complementary strategy, detecting as few as 0.002% NB cells, characterised as CD45negCD9+CD81+CD56+ch14:18+GD2+ cells with occasional CD57+CD138+CD166+ expression.

Conclusion:

TH RT-qPCR alone is limited for detection of NB cells because of “false positives” in samples from patients with other diseases. Advanced FC may serve as a complementary method to detect residual NB, but needs further confirmation in larger patient cohorts.

Zusammenfassung

Hintergrund:

Die Real-time-Reverse-Transkriptase PCR (RT-qPCR) oder konventionelle RT-cPCR für Tyrosinhydroxylase (TH) dient zum Nachweis von Neuroblastomzellen (NB). Die TH-Expression in Normalgewebe erfordert weitere diagnostische Strategien.

Methoden:

Wir untersuchten 857 Proben von 65 NB-Patienten mit RT-cPCR für TH und verglichen die Ergebnissen mit 666 Proben aus der RT-qPCR. Als Kontrolle wurden 84 Proben von Patienten mit anderen Diagnosen und 354 Proben gesunder Spender geprüft. 132 Proben wurden mit 5-Farb-Flowzytometrie hinsichtlich des Vorhandensein von NB-Zellen ausgewertet.

Ergebnissse:

Die Cohen’s-Kappa-Koeffizienten zeigten eine beachtliche Übereinstimmung sowohl im Vergleich der RT-cPCR vs. RT-qPCR als auch der RT-cPCR vs. FC und eine mittelmäßige Übereinstimmung der RT-qPCR vs. FC. FC-Panel bieten eine weitere diagnostische Strategie, die NB-Zellen als CD45negCD9+CD81+CD56+ch14:18+GD2+ charakterisiert mit gelegentlicher Expression von CD57, CD138, CD166 und einer Nachweisgrenze von 0,002%.

Schlussfolgerung:

Aufgrund falsch positiver Ergebnisse bei Proben von Patienten mit anderen Erkrankungen ist die RT-qPCR allein nur begrenzt zum Nachweis von NB-Zellen geeignet. Die erweiterte FC als komplementäre Methode zur Detektion von NB-Zellen ist im größeren Kollektiv zu prüfen.

Supplementary Material

 
  • References

  • 1 Ambros IM, Brunner B, Aigner G et al. A multilocus technique for risk evaluation of patients with neuroblastoma. Clin Cancer Res 2011; 17: 792-804
  • 2 Ambros PF, Ambros IM, Brodeur GM et al. International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee. Klin Padiatr 2009; 221: 194
  • 3 Beiske K, Burchill SA, Cheung IY et al. Consensus criteria for sensitive detection of minimal neuroblastoma cells in bone marrow, blood and stem cell preparations by immunocytology and QRT-PCR: recommendations by the International Neuroblastoma Risk Group Task Force. Br J Cancer 2009; 100: 1627-1637
  • 4 Cai JY, Tang YJ, Jiang LM et al. Prognostic influence of minimal residual disease detected by flow cytometry and peripheral blood stem cell transplantation by CD34+ selection in childhood advanced neuroblastoma. Pediatr Blood Cancer 2007; 49: 952-957
  • 5 Campana D. Role of minimal residual disease monitoring in adult and pediatric acute lymphoblastic leukemia. Hematol Oncol Clin North Am 2009; 23: 1083-1098
  • 6 Cheung IY, Feng Y, Gerald W et al. Exploiting gene expression profiling to identify novel minimal residual disease markers of neuroblastoma. Clin Cancer Res 2008; 14: 7020-7027
  • 7 Corrias MV, Faulkner LB, Pistorio A et al. Detection of neuroblastoma cells in bone marrow and peripheral blood by different techniques: accuracy and relationship with clinical features of patients. Clin Cancer Res 2004; 10: 7978-7985
  • 8 Csathy L, Kappelmayer J, Szegedi I et al. Classical and atypical neuroblastoma – case reports. Cytometry B Clin Cytom 2011; 80: 134-136
  • 9 Fukuda M, Miyajima Y, Miyashita Y et al. Disease outcome may be predicted by molecular detection of minimal residual disease in bone marrow in advanced neuroblastoma: a pilot study. J Pediatr Hematol Oncol 2001; 23: 10-13
  • 10 Horibe K, Fukuda M, Miyajima Y et al. Outcome prediction by molecular detection of minimal residual disease in bone marrow for advanced neuroblastoma. Med Pediatr Oncol 2001; 36: 203-204
  • 11 Komada Y, Zhang XL, Zhou YW et al. Flow cytometric analysis of peripheral blood and bone marrow for tumor cells in patients with neuroblastoma. Cancer 1998; 82: 591-599
  • 12 Lambooy LH, Gidding CE, van den Heuvel LP et al. Real-time analysis of tyrosine hydroxylase gene expression: a sensitive and semiquantitative marker for minimal residual disease detection of neuroblastoma. Clin Cancer Res 2003; 9: 812-819
  • 13 Landis JR, Koch GG. An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 1977; 33: 363-374
  • 14 Marabelle A, Merlin E, Halle P et al. CD34+ immunoselection of autologous grafts for the treatment of high-risk neuroblastoma. Pediatr Blood Cancer 2011; 56: 134-142
  • 15 Matthay KK, Reynolds CP, Seeger RC et al. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a children’s oncology group study. J Clin Oncol 2009; 27: 1007-1013
  • 16 Modak S, Cheung NK. Neuroblastoma: Therapeutic strategies for a clinical enigma. Cancer Treat Rev 2010; 36: 307-317
  • 17 Nagai J, Ishida Y, Koga N et al. A new sensitive and specific combination of CD81/CD56/CD45 monoclonal antibodies for detecting circulating neuroblastoma cells in peripheral blood using flow cytometry. J Pediatr Hematol Oncol 2000; 22: 20-26
  • 18 Naito H, Kuzumaki N, Uchino J et al. Detection of tyrosine hydroxylase mRNA and minimal neuroblastoma cells by the reverse transcription-polymerase chain reaction. Eur J Cancer 1991; 27: 762-765
  • 19 Okcu MF, Wang RY, Bueso-Ramos C et al. Flow cytometry and fluorescence in situ hybridization to detect residual neuroblastoma cells in bone marrow. Pediatr Blood Cancer 2005; 45: 787-795
  • 20 Pession A, Libri V, Sartini R et al. Real-time RT-PCR of tyrosine hydroxylase to detect bone marrow involvement in advanced neuroblastoma. Oncol Rep 2003; 10: 357-362
  • 21 Ratei R, Karawajew L, Lacombe F et al. Discriminant function analysis as decision support system for the diagnosis of acute leukemia with a minimal four color screening panel and multiparameter flow cytometry immunophenotyping. Leukemia 2007; 21: 1204-1211
  • 22 Stutterheim J, Gerritsen A, Zappeij-Kannegieter L et al. Detecting minimal residual disease in neuroblastoma: the superiority of a panel of real-time quantitative PCR markers. Clin Chem 2009; 55: 1316-1326
  • 23 Stutterheim J, Gerritsen A, Zappeij-Kannegieter L et al. PHOX2B is a novel and specific marker for minimal residual disease testing in neuroblastoma. J Clin Oncol 2008; 26: 5443-5449
  • 24 Swerts K, De Moerloose B, Dhooge C et al. Detection of residual neuroblastoma cells in bone marrow: comparison of flow cytometry with immunocytochemistry. Cytometry B Clin Cytom 2004; 61: 9-19
  • 25 Trager C, Kogner P, Lindskog M et al. Quantitative analysis of tyrosine hydroxylase mRNA for sensitive detection of neuroblastoma cells in blood and bone marrow. Clin Chem 2003; 49: 104-112
  • 26 Tsang KS, Li CK, Tsoi WC et al. Detection of micrometastasis of neuroblastoma to bone marrow and tumor dissemination to hematopoietic autografts using flow cytometry and reverse transcriptase-polymerase chain reaction. Cancer 2003; 97: 2887-2897
  • 27 Viprey VF, Lastowska MA, Corrias MV et al. Minimal disease monitoring by QRT-PCR: guidelines for identification and systematic validation of molecular markers prior to evaluation in prospective clinical trials. J Pathol 2008; 216: 245-252
  • 28 Wehner S, Soerensen J, Schwabe D et al. 10-Parameter flow cytometry as a new tool to improve diagnosis and MRD follow-up of acute leukemias. Klin Padiatr 2009; 221: 393-395