Zusammenfassung
Hintergrund: Die AV-Knoten-Reentrytachykardie
(AVNRT) ist eine häufige supraventrikuläre Herzrhythmusstörung
bei Kindern, Jugendlichen und jungen Erwachsenen. Die konventionelle Katheterablation
ermöglicht praktisch immer eine endgültige Heilung,
ist jedoch mit einer Röntgenstrahlen-Exposition und einem
damit verbundenen Strahlenrisiko für Patient und Personal
verbunden. Wir beschreiben eine sichere und einfache Technik für
eine vollständig durchleuchtungsfreie Katheterablation.
Patienten und Methodik: Bei 12 Patienten
mit AVNRT (medianes Alter 20 Jahre; 11–75 Jahre) wurde
eine durchleuchtungsfreie Katheterablation angestrebt. Die Visualisierung
kardiovaskulärer Strukturen erfolgte unter Zuhilfenahme
eines 7F-Ablationskatheters mit integriertem Anpresskraftsensor
und eines elektroanatomischen nicht-fluoroskopischen Navigationsystems.
Ergebnisse: Bei allen Patienten gelang
eine erfolgreiche, komplikationslose und vollständig durchleuchtungsfreie
Katheterablation der AVNRT. Im Nachbeobachtungszeitraum von im Median
6,2 Monaten (2,7–12,8 Monate) traten keine Tachykardie-Rezidive
auf.
Folgerung: Die Verwendung eines Ablationskatheters
mit Anpresskraftmessung in Verbindung mit einem nicht-fluoroskopischen
Navigationssystem erlaubt eine durchleuchtungsfreie Katheterablation
der AVNRT. Diese Technik ist einfach und sicher, sodass sie in den
meisten elektrophysiologischen Laboren verwendet werden könnte.
Abstract
Background: Atrioventricular nodal reentrant
tachycardia (AVNRT) is a frequent supraventricular tachycardia in
children and young adults. Despite favourable success rates of catheter ablation,
conventional fluoroscopic catheter guidance is associated with risks
of low-dose ionizing radiation for the patient and the personnel.
Here we describe a technique for zero-fluoroscopy catheter ablation
using contact force technology.
Patients and methods: Zero-fluoroscopy
catheter ablation was attempted in 12 patients with AVNRT (median
age 20 years; range 11-75 years). An ablation catheter with integrated
contact force sensor and a nonfluoroscopic electroanatomical mapping system
was used for visualization of cardiovascular structures. Mean contact
forces during mapping and ablation were restricted to an upper limit
of 50 g to avoid cardiovascular injuries.
Results: Zero-fluoroscopy catheter ablation
was performed successfully and uneventfully in all patients. There
were no arrhythmia recurrences during a median follow-up of 6.2
months (range 2.7-12.8).
Conclusion: Zero-fluoroscopy catheter
ablation of AVNRT is possible and appears simple yet safe, when
a nonfluoroscopic electroanatomical mapping system is used in combination
with an ablation catheter with integrated contact force sensor.
The presented technique could thus be easily employed in most electrophysiological
laboratories.
Schlüsselwörter
Katheterablation - Strahlenrisiko - Anpresskraftkontrolle - AV-Knoten-Reentrytachykardie
Keywords
Catheter ablation - radiation risk - contact force control - atrioventricular nodal reentrant tachycardia
Literatur
1
Alvarez M, Tercedor L, Almansa I. et al .
Safety and feasibility of catheter ablation
for atrioventricular nodal re-entrant tachycardia without fluoroscopic
guidance.
Heart Rhythm.
2009;
6
1714-1720
2
Berrington de Gonzales A, Darby S.
Risk of
cancer from diagnostic X-rays: estimates for the UK and 14 other
countries.
Lancet.
2004;
363
345-351
3 Bundesamt für
Strahlenschutz .Umweltradioaktivität und Strahlenbelastung.
Jahresbericht 2009. Bonn: Bundesministerium für
Umwelt, Naturschutz und Reaktorsicherheit (BMU).
4
Calkins H, Niklason L, Sousa J. et al .
Radiation exposure during radiofrequency
catheter ablation of accessory atrioventricular connections.
Circulation.
1991;
84
2376-2382
5
Calkins H, Yong P, Miller J M. et al .
Catheter ablation of accessory pathways, atrioventricular
nodal reentrant tachycardia, and the atrioventricular junction:
final results of a prospective, multicenter clinical trial. The
Atakr Multicenter Investigators Group.
Circulation.
1999;
99
262-270
6
Casella M, Pelargonio G, Dello Russo A. et al .
„Near-zero” fluoroscopic
exposure in supraventricular arrhythmia ablation using the EnSite
NavX mapping system: personal experience and review of the literature.
J Interv Card Electrophysiol.
2011;
31
109-118
7
Chistiakov D A, Voronova N V, Chistiakov P A.
Genetic variations in DNA repair genes,
radiosensitivity to cancer and susceptibility to acute tissue reactions in
radiotherapy-treated cancer patients.
Acta Oncol.
2008;
47
809-824
8
Clark J, Bockoven J R, Lane J. et al .
Use of three-dimensional catheter guidance
and trans-esophageal echocardiography to eliminate fluoroscopy in
catheter ablation of left-sided accessory pathways.
Pacing
Clin Electrophysiol.
2008;
31
283-289
9
Clay M A, Campbell R M, Strieper M. et al .
Long-term risk of fatal malignancy following
pediatric radiofrequency ablation.
Am J Cardiol.
2008;
102
913-915
10
Drago F, Silvetti M S, Di Pino A. et al .
Exclusion of fluoroscopy during ablation
treatment of right accessory pathway in children.
J Cardiovasc
Electrophysiol.
2002;
13
778-782
11
Earley M J, Showkathali R, Alzetani M. et al .
Radiofrequency ablation of arrhythmias
guided by non-fluoroscopic catheter location: a prospective randomized
trial.
Eur Heart J.
2006;
27
1223-1229
12
Ferguson J D, Helms A, Mangrum J M. et al .
Catheter ablation of atrial fibrillation
without fluoroscopy using intracardiac echocardiography and electroanatomic
mapping.
Circ Arrhythm Electrophysiol.
2009;
2
611-619
13
Hindricks G, Willems S, Kautzner J. et al .
Effect of electroanatomically guided versus
conventional catheter ablation of typical atrial flutter on the fluoroscopy
time and resource use: a prospective randomized multicenter study.
J Cardiovasc Electrophysiol.
2009;
20
734-740
14
Kerst G, Weig H -J, Weretka S. et al .
Contact Force Controlled Zero-Fluoroscopy
Catheter Ablation of Right-Sided and Left-Atrial Arrhythmias.
Cardiol Young.
2011;
21
S60
15
Kidouchi T, Suzuki S, Furui S. et al .
Entrance Skin Dose during Radiofrequency
Catheter Ablation for Tachyarrhythmia: A Multicenter Study.
Pacing
Clin Electrophysiol.
2011;
34
563-570
16
Kopelman H A, Prater S P, Tondato F. et al .
Slow pathway catheter ablation of atrioventricular
nodal re-entrant tachycardia guided by electroanatomical mapping:
a randomized comparison to the conventional approach.
Europace.
2003;
5
171-174
17
Kovoor P, Ricciardello M, Collins L. et al .
Risk to patients from radiation associated
with radiofrequency ablation for supraventricular tachycardia.
Circulation.
1998;
98
1534-1540
18
Lindsay B D, Eichling J O, Ambos H D. et al .
Radiation exposure to patients and
medical personnel during radiofrequency catheter ablation for supraventricular
tachycardia.
Am J Cardiol.
1992;
70
218-223
19
Mettler Jr F A, Bhargavan M, Faulkner K. et al .
Radiologic and nuclear medicine
studies in the United States and worldwide: frequency, radiation
dose, and comparison with other radiation sources – 1950 – 2007.
Radiology.
2009;
253
520-531
20 National Research Council
(U.S.) .Committee on the Biological Effects of Ionizing
Radiations. Health effects of exposure to low levels of ionizing
radiation: BEIR V. Washington, D.C.: National Academy Press; 1990 xiii: 421
21 National Research Council
(U.S.) .Committee to Assess Health Risks from Exposure
to Low Level of Ionizing Radiation. Health risks from exposure to
low levels of ionizing radiation: BEIR VII Phase 2,. Washington,
D.C: National Academy Press; 2006 xvi: 406
22
Papagiannis J, Tsoutsinos A, Kirvassilis G. et al .
Nonfluoroscopic catheter navigation for
radiofrequency catheter ablation of supraventricular tachycardia
in children.
Pacing Clin Electrophysiol.
2006;
29
971-978
23
Perisinakis K, Damilakis J, Theocharopoulos N. et al .
Accurate assessment of patient effective
radiation dose and associated detriment risk from radiofrequency
catheter ablation procedures.
Circulation.
2001;
104
58-62
24
Reddy V Y, Neuzil P, Kautzner J. et al .
Low Catheter-Tissue Contact Force Results
in Late PV Reconnection – Initial results from EFFICAS
I.
Heart Rhythm.
2011;
8
AB 12-1
25 Röntgenverordnung
in der Fassung der Bekanntmachung vom 30. April 2003. Bundesgesetzblatt,. Bonn: Bundesministerium für Umwelt, Naturschutz und
Reaktorsicherheit. 604-635
26
Rosenthal L S, Mahesh M, Beck T J. et al .
Predictors of fluoroscopy time and estimated
radiation exposure during radiofrequency catheter ablation procedures.
Am J Cardiol.
1998;
82
451-458
27
Shah D, Schmidt B, Arentz T. et
al .
Catheter contact force during human right and Left
atrial mapping in humans.
Heart Rhythm.
2009;
6
PO04-25
28
Smith G, Clark J M.
Elimination of fluoroscopy
use in a pediatric electrophysiology laboratory utilizing three-dimensional
mapping.
Pacing Clin Electrophysiol.
2007;
30
510-518
29
Theocharopoulos N, Damilakis J, Perisinakis K. et al .
Occupational exposure in the electrophysiology
laboratory: quantifying and minimizing radiation burden.
Br
J Radiol.
2006;
79
644-651
30
Tucker K J, Curtis A B, Murphy J. et al .
Transesophageal echocardiographic guidance
of transseptal left heart catheterization during radiofrequency ablation
of left-sided accessory pathways in humans.
Pacing Clin
Electrophysiol.
1996;
19
272-281
31
Tuzcu V.
A nonfluoroscopic approach for electrophysiology and catheter ablation
procedures using a three-dimensional navigation system.
Pacing Clin
Electrophysiol.
2007;
30
519-525
32
Vano E, Kleiman N J, Duran A. et al .
Radiation cataract risk in interventional cardiology
personnel.
Radiat Res.
2010;
174
490-495
33
Zrenner B, Dong J, Schreieck J. et al .
Transvenous cryoablation versus radiofrequency
ablation of the slow pathway for the treatment of atrioventricular
nodal re-entrant tachycardia: a prospective randomized pilot study.
Eur Heart J.
2004;
25
2226-2231
PD Dr. med. Jürgen Schreieck
Klinik für Innere Medizin III Universitätsklinik
Tübingen
Otfried-Müller-Straße
10
72076 Tübingen
Phone: 07071/29-80642
Fax: 07071/29-4550
Email: juergen.schreieck@med.uni-tuebingen.de