Handchir Mikrochir Plast Chir 2011; 43(2): 88-94
DOI: 10.1055/s-0031-1275282
Originalarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Präoperative CT Angiografie zur Planung freier Perforans-Lappenplastiken (DIEP-Flaps) zur Brustrekonstruktion

Preoperative CT Angiography for Planning Free Perforator Flaps in Breast ReconstructionH. Kuekrek1 , D. Müller1 , S. Paepke2 , M. Dobritz3 , H.-G. Machens1 , R. E. Giunta1
  • 1Klinik und Poliklinik für Plastische Chirurgie und Handchirurgie, Klinikum rechts der Isar, Technische Universität München
  • 2Frauenklinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München
  • 3Institut für Röntgendiagnostik, Klinikum rechts der Isar, Technische Universität München
Weitere Informationen

Publikationsverlauf

eingereicht 30.9.2010

akzeptiert 4.3.2011

Publikationsdatum:
20. April 2011 (online)

Zusammenfassung

Zur Planung von Perforans-Lappenplastiken ist die präoperative Dopplersonografie zur Lokalisation der Perforans-Gefäße seit langem etabliert. Hierdurch lässt sich der Durchtrittspunkt durch die Faszie präoperativ lokalisieren. Gleichzeitig ist aber weder der intramuskuläre Verlauf noch die Lagebeziehung zur A. epigastrica inferior dadurch ersichtlich. Das Verfahren der CT-Angiografie bietet neuerdings die Möglichkeit der Visualisierung der Perforans-Gefäße im Verlauf des Gewebes. Die vorliegende Arbeit fasst die Erfahrungen mit der präoperativen CT-Angiografie an unserem Brustzentrum zusammen. Seit Frühjahr 2009 führten wir bei 44 Patientinnen einen Brustwiederaufbau mit freien Lappenplastiken durch. 6 davon waren beidseitig. Bei insgesamt 50 Brustrekonstruktionen wurde bei 23 Patientinnen eine DIEP- und bei 27 eine muskelsparende TRAM-Lappenplastik benutzt. Bei 29 Patientinnen wurde neben der präoperativen Dopplersonografie der vorderen Bauchwand eine CT-Angiografie durchgeführt. In der CT-Angiografie konnten im Mittel sowohl auf der rechten als auch auf der linken Seite zumindest 2 Perforans-Gefäße dargestellt werden, die aufgrund der Signalstärke als Lappenstielgefäße infrage kamen. 3 nach späterem mikrochirurgischen Präparationsaufwand unterschiedliche Typen an Perforans-Gefäßen konnten unterschieden werden: 1. Das kurzstreckig intramuskuläre, direkte Perforans-Gefäß Typ A (39%), 2. Das langstreckig intramuskuläre Perforans-Gefäß Typ B (50%) und 3. Das medial um den M. rectus abdominis verlaufende („Turn around”) Perforans-Gefäß Typ C (11%). Das Verfahren der CT-Angiografie ermöglicht die zuverlässige Darstellung der Perforans-Gefäße im gesamten Verlauf und erleichtert dadurch sowohl die präoperative Auswahl des Perforans-Gefäßes als auch später die intraoperative Präparation erheblich. Die vorgeschlagene Einteilung in 3 unterschiedliche Typen erleichtert die präoperative Einschätzung des mikrochirurgischen Präparationsaufwandes. Im Vergleich zur bislang angewandten Doppler-Sonografie sind als Nachteile der zusätzliche Kostenfaktor sowie die Strahlenbelastung für die Patientin hinzunehmen.

Abstract

Preoperative Doppler ultrasonography for planning free perforator flaps is widely established to identify preoperatively perforators. The method allows one to localise the penetrating point of the perforator through the abdominal fascia. By this means it is not possible to see the intramuscular course or the position of the perforator in relation to the inferior epigastric artery. Lately the technique of computed tomographic angiography provides an opportunity for visualising the course of perforator vessels in these tissues. This paper summarises our experience with the preoperative CT angiography in our breast centre. Since spring 2009 we have reconstructed the breasts of 44 female patients by using free flaps from the lower abdominal wall. 6 of these were bilateral. In a total number of 50 breast reconstructions we used 23 deep inferior epigastric perforator (DIEP) flaps and 27 muscle-sparing transverse rectus abdominis muscle (TRAM) flaps. In addition to the preoperative ultrasonography, a CT angiography of the lower abdomen was conducted in 29 patients. On average they showed at least 2 perforators on the left as well as right abdominal sides, which could be used as flap vessels based on their signal intensity. Based on their estimated microsurgical dissection complexity, the perforator vessels could be classified into 3 groups: 1) direct perforators of category A with short intramuscular course (39%), 2) perforators with long intramuscular course of category B (50%) and 3) “turn around” perforators of category C, which pass medially around the rectus abdominis (11%). The technique of CT angiography permits a reliable preoperative visualisation of perforators in their entire course and facilitates the selection of the supplying perforator as well as the intraoperative procedure for the surgeon. The suggested classification of perforators into 3 groups simplifies the preoperative assessment of the microsurgical dissection effort. Compared to the commonly used Doppler ultrasonography there are disadvantages like the additional cost factor and the radiation exposure. However, in our experience the more detailed planning increases the safety of flap raising and reduces surgery time, so that we consider CT angiography a positive tool to facilitate free perforator flaps.

Literatur

  • 1 Allen RJ, Treece P. Deep inferior epigastric perforator flap for breast reconstruction.  Ann Plast Surg. 1994;  32 (1) 32-38
  • 2 Busic V, Das-Gupta R, Mesic H. et al . The deep inferior epigastric perforator flap for breast reconstruction, the learning curve explored.  J Plast Reconstr Aesthet Surg. 2006;  59 (6) 580-584
  • 3 Rozen WM, Ashton MW, Pan WR. et al . Raising perforator flaps for breast reconstruction: the intramuscular anatomy of the deep inferior epigastric artery.  Plast Reconstr Surg. 2007;  120 (6) 1443-1449
  • 4 Giunta RE, Geisweid A, Feller AM. The value of preoperative Doppler sonography for planning free perforator flaps.  Plast Reconstr Surg. 2000;  105 (7) 2381-2386
  • 5 Masia J, Clavero JA, Larranaga JR. et al . Multidetector-row computed tomography in the planning of abdominal perforator flaps.  J Plast Reconstr Aesthet Surg. 2006;  59 (6) 594-599
  • 6 Rozen WM, Ashton MW, Grinsell D. et al . Establishing the case for CT angiography in the preoperative imaging of abdominal wall perforators.  Microsurgery. 2008;  28 (5) 306-313
  • 7 Blondeel PN, Beyens G, Verhaeghe R. et al . Doppler flowmetry in the planning of perforator flaps.  Br J Plast Surg. 1998;  51 (3) 202-209
  • 8 Masia J, Larranaga J, Clavero JA. et al . The value of the multidetector row computed tomography for the preoperative planning of deep inferior epigastric artery perforator flap: our experience in 162 cases.  Ann Plast Surg. 2008;  60 (1) 29-36
  • 9 Masia J, Kosutic D, Clavero JA. et al . Preoperative computed tomographic angiogram for deep inferior epigastric artery perforator flap breast reconstruction.  J Reconstr Microsurg. 2010;  26 (1) 21-28
  • 10 Hamdi M, Van Landuyt K, Van Hedent E. et al . Advances in autogenous breast reconstruction: the role of preoperative perforator mapping.  Ann Plast Surg. 2007;  58 (1) 18-26
  • 11 Rozen WM, Ashton MW, Stella DL. et al . The accuracy of computed tomographic angiography for mapping the perforators of the deep inferior epigastric artery: a blinded, prospective cohort study.  Plast Reconstr Surg. 2008;  122 (4) 1003-1009
  • 12 Knobloch K, Reuss E, Gohritz A. et al . A survey of preoperative perforator mapping in perforator flap surgery.  Handchir Mikrochir Plast Chir. 2009;  41 (6) 322-326
  • 13 Ensat F, Babl M, Conz C. et al . Doppler Sonography and Colour Doppler Sonography in the Preoperative Assessment of Anterolateral Thigh Flap Perforators.  Handchir Mikrochir Plast Chir. 2010; 
  • 14 Hallock GG. Doppler sonography and color duplex imaging for planning a perforator flap.  Clin Plast Surg. 2003;  30 (3) 347-3vi
  • 15 Taylor GI, Doyle M, McCarten G. The Doppler probe for planning flaps: anatomical study and clinical applications.  Br J Plast Surg. 1990;  43 (1) 1-16
  • 16 Alonso-Burgos A, Garcia-Tutor E, Bastarrika G. et al . Preoperative planning of deep inferior epigastric artery perforator flap reconstruction with multislice-CT angiography: imaging findings and initial experience.  J Plast Reconstr Aesthet Surg. 2006;  59 (6) 585-593
  • 17 Clavero JA, Masia J, Larranaga J. et al . MDCT in the preoperative planning of abdominal perforator surgery for postmastectomy breast reconstruction.  AJR Am J Roentgenol. 2008;  191 (3) 670-676
  • 18 Fansa H, Schirmer S, Frerichs O. et al . Significance of Abdominal Wall CT-Angiography in Planning DIEA Perforator Flaps, TRAM Flaps and SIEA Flaps.  Handchir Mikrochir Plast Chir. 2010; 
  • 19 Masia J, Clavero JA, Larranaga J. et al . Preoperative planning of the abdominal perforator flap with multidetector row computed tomography: 3 years of experience.  Plast Reconstr Surg. 2008;  122 (2) 80e-81e
  • 20 Rosson GD, Williams CG, Fishman EK. et al . 3D CT angiography of abdominal wall vascular perforators to plan DIEAP flaps.  Microsurgery. 2007;  27 (8) 641-646
  • 21 Rozen WM, Phillips TJ, Ashton MW. et al . A new preoperative imaging modality for free flaps in breast reconstruction: computed tomographic angiography.  Plast Reconstr Surg. 2008;  122 (1) 38e-40e
  • 22 Scott JR, Liu D, Said H. et al . Computed tomographic angiography in planning abdomen-based microsurgical breast reconstruction: a comparison with color duplex ultrasound.  Plast Reconstr Surg. 2010;  125 (2) 446-453
  • 23 Fukaya E, Kuwatsuru R, Iimura H. et al . Imaging of the superficial inferior epigastric vascular anatomy and preoperative planning for the SIEA flap using MDCTA.  J Plast Reconstr Aesthet Surg. 2010; 
  • 24 Mathes DW, Neligan PC. Current techniques in preoperative imaging for abdomen-based perforator flap microsurgical breast reconstruction.  J Reconstr Microsurg. 2010;  26 (1) 3-10
  • 25 Smit JM, Dimopoulou A, Liss AG. et al . Preoperative CT angiography reduces surgery time in perforator flap reconstruction.  J Plast Reconstr Aesthet Surg. 2009;  62 (9) 1112-1117
  • 26 Uppal RS, Casaer B, Van Landuyt K. et al . The efficacy of preoperative mapping of perforators in reducing operative times and complications in perforator flap breast reconstruction.  J Plast Reconstr Aesthet Surg. 2009;  62 (7) 859-864
  • 27 Moon H-K, Taylor G-I. The vascular anatomy of rectus abdominis musculocutaneous flaps based on the deep superior epigastric system.  Plast Reconstr Surg. 1988;  82 815-832
  • 28 Casey III WJ, Chew RT, Rebecca AM. et al . Advantages of preoperative computed tomography in deep inferior epigastric artery perforator flap breast reconstruction.  Plast Reconstr Surg. 2009;  123 (4) 1148-1155
  • 29 See MS, Pacifico MD, Harley OJ. et al . Incidence of ‘Incidentalomas’ in over 100 consecutive CT angiograms for preoperative DIEP flap planning.  J Plast Reconstr Aesthet Surg. 2010;  63 (1) 106-110
  • 30 Phillips TJ, Stella DL, Rozen WM. et al . Abdominal wall CT angiography: a detailed account of a newly established preoperative imaging technique.  Radiology. 2008;  249 (1) 32-44
  • 31 Rozen WM, Whitaker IS, Stella DL. et al . The radiation exposure of Computed Tomographic Angiography (CTA) in DIEP flap planning: low dose but high impact.  J Plast Reconstr Aesthet Surg. 2009;  62 (12) e654-e655
  • 32 Rozen WM, Ashton MW, Whitaker IS. et al . The financial implications of computed tomographic angiography in DIEP flap surgery: a cost analysis.  Microsurgery. 2009;  29 (2) 168-169

Korrespondenzadresse

Dr. med. Haydar Kuekrek

Klinikum rechts der Isar

Plastische Chirurgie und

Handchirurgie

Ismaninger Straße 22

81675 Munich

eMail: h.kuekrek@lrz.tu-muenchen.de