Klin Monbl Augenheilkd 2011; 228(4): 311-317
DOI: 10.1055/s-0031-1273216
Originalarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Clinical Evaluation of a Novel Population-Based Regression Analysis for Detecting Glaucomatous Visual Field Progression

Klinische Beurteilung einer neuen populationsbasierten Methode zur Erkennung von glaukomatösen GesichtsfeldveränderungenM. P. Kovalska1 , E. Bürki1 , A. Schoetzau1 , S. F. Orguel1 , J. Flammer1 , S. Orguel1 , M. C. Grieshaber1
  • 1Department of Ophthalmology, University Hospital of Basel, Basel, Switzerland (Chairman: Prof. Dr. Josef Flammer)
Further Information

Publication History

received: 1.10.2010

accepted: 30.11.2010

Publication Date:
11 April 2011 (online)

Zusammenfassung

Hintergrund: Echte Gesichtsfeldveränderungen können durch die klinische Beurteilung, oder mithilfe einer Trendanalyse oder Ereignisanalyse von Fluktuationen unterschieden werden. Das Ziel dieser Arbeit war es, die klinische Beurteilung von Gesichtsfeldreihen mit einem neuen statistischen Verfahren (Octopus Field Analysis, OFA) zur Erkennung von signifikanten glaukombedingten Veränderungen im Laufe der Zeit zu vergleichen. Gleichzeitig wird die Leistungsfähigkeit der herkömmlichen Regressionsanalyse mit der neuen Methode verglichen. Patienten und Methoden: 240 Gesichtsfeldreihen von 240 Patienten mit mindestens 9 Untersuchungen wurden durch zwei erfahrene Untersucher bezüglich Stabilität oder Progression klassiert. Die Klassifikation diente als Grundlage und wurde mit folgenden statistischen Testverfahren verglichen: (a) t-Test global, (b) r-Test global, (c) Regressionsanalyse von 10 Gesichtsfeldclustern und (d) punktweise lineare Regressionsanalyse. Ergebnisse: 32,5 % der Gesichtsfelder wurden von den Untersuchern als progressiv eingestuft. Die Sensitivität und Spezifität waren für den r-Test 89,7 % respektive 92,0 %, und für den t-Test 73,1 % respektive 93,8 %. In der punktweisen linearen Regressionsanalyse war die Spezifität vergleichbar (89,5 versus 92 %), hingegen war die Sensitivität deutlich geringer (22,4 versus 89,7 %) für ein Signifikanzniveau von p = 0,01. Die Cluster-Trend-Analyse (p = 0,005) zeigte eine deutlich höhere Sensitivität für den r-Test (37,7 %) als für den t-Test (14,1 %) bei vergleichbarer Spezifität (88,3 versus 93,8 %). Bezüglich der Clusterverteilung waren die parazentralen Cluster und die superiornasalen Hemi-Gesichtfelder am meisten fortschreitend. Schlussfolgerungen: Die populationsbasierte Regressionsanalyse scheint eine Progression beim Glaukom eher zu erkennen als die Trendanalyse und vermeidet bei etwa gleicher Trefferquote verschiedene Nachteile der Ereignisanalyse. Sie erleichtert dank der automatischen Klassierung die Erfassung von glaukombedingten Gesichtsfeldveränderungen und gestattet mithilfe von Gesichtsfeldclustern eine verbesserte Visualisierung der Korrelation zwischen Funktion und Struktur.

Abstract

Background: The distinction of real progression from test variability in visual field (VF) series may be based on clinical judgment, on trend analysis based on follow-up of test parameters over time, or on identification of a significant change related to the mean of baseline exams (event analysis). The aim of this study was to compare a new population-based method (Octopus field analysis, OFA) with classic regression analyses and clinical judgment for detecting glaucomatous VF changes. Patients and Methods: 240 VF series of 240 patients with at least 9 consecutive examinations available were included into this study. They were independently classified by two experienced investigators. The results of such a classification served as a reference for comparison for the following statistical tests: (a) t-test global, (b) r-test global, (c) regression analysis of 10 VF clusters and (d) point-wise linear regression analysis. Results: 32.5 % of the VF series were classified as progressive by the investigators. The sensitivity and specificity were 89.7 % and 92.0 % for r-test, and 73.1 % and 93.8 % for the t-test, respectively. In the point-wise linear regression analysis, the specificity was comparable (89.5 % versus 92 %), but the sensitivity was clearly lower than in the r-test (22.4 % versus 89.7 %) at a significance level of p = 0.01. A regression analysis for the 10 VF clusters showed a markedly higher sensitivity for the r-test (37.7 %) than the t-test (14.1 %) at a similar specificity (88.3 % versus 93.8 %) for a significant trend (p = 0.005). In regard to the cluster distribution, the paracentral clusters and the superior nasal hemifield progressed most frequently. Conclusions: The population-based regression analysis seems to be superior to the trend analysis in detecting VF progression in glaucoma, and may eliminate the drawbacks of the event analysis. Further, it may assist the clinician in the evaluation of VF series and may allow better visualization of the correlation between function and structure owing to VF clusters.

References

  • 1 Diaz-Aleman V T, Anton A, Rosa M G et al. Detection of visual-field deterioration by Glaucoma Progression Analysis and Threshold Noiseless Trend programs.  Br J Ophthalmol. 2009;  93 322-328
  • 2 Viswanathan A C, Crabb D P, McNaught A I et al. Interobserver agreement on visual field progression in glaucoma: a comparison of methods.  Br J Ophthalmol. 2003;  87 726-730
  • 3 Werner E B, Bishop K I, Koelle de la J et al. A comparison of experienced clinical observers and statistical tests in detection of progressive visual field loss in glaucoma using automated perimetry.  Arch Ophthalmol. 1988;  106 619-623
  • 4 Brusini P. Monitoring glaucoma progression.  Prog Brain Research. 2008;  173 59-73
  • 5 Brusini P, Tosoni C. Staging of functional damage in glaucoma using frequency doubling technology.  J Glaucoma. 2003;  12 417-426
  • 6 Giangiacomo A, Garway-Heath D, Caprioli J. Diagnosing glaucoma progression: current practice and promising technologies.  Curr Opin Ophthal. 2006;  17 153-162
  • 7 Mayama C, Araie M, Suzuki Y et al. Statistical evaluation of the diagnostic accuracy of methods used to determine the progression of visual field defects in glaucoma.  Ophthalmology. 2004;  111 2117-2125
  • 8 Nouri-Mahdavi K, Brigatti L, Weitzman M et al. Comparison of methods to detect visual field progression in glaucoma.  Ophthalmology. 1997;  104 1228-1236
  • 9 Spry P G, Johnson C A. Identification of progressive glaucomatous visual field loss.  Surv Ophthalmol. 2002;  47 158-173
  • 10 Vesti E, Johnson C A, Chauhan B C. Comparison of different methods for detecting glaucomatous visual field progression.  Invest Ophthalmol Vis Sci. 2003;  44 3873-3879
  • 11 Heijl A, Leske M C, Bengtsson B et al. Measuring visual field progression in the Early Manifest Glaucoma Trial.  Acta Ophthalmol Scand. 2003;  81 286-293
  • 12 Manual Octopus Field Analyzer V 6.07. 
  • 13 Weber J, Krieglstein G K. Graphical analysis of topographical trends (GATT) in automated perimetry.  Int Ophthalmol. 1989;  13 351-356
  • 14 McNaught A I, Crabb D P, Fitzke F W et al. Visual field progression: comparison of Humphrey Statpac2 and pointwise linear regression analysis.  Graefe’s Arch Ophthalmol. 1996;  234 411-418
  • 15 Viswanathan A C, Fitzke F W, Hitchings R A. Early detection of visual field progression in glaucoma: a comparison of PROGRESSOR and STATPAC 2.  Br J Ophthalmol. 1997;  81 1037-1042
  • 16 Bengtsson B, Heijl A. A visual field index for calculation of glaucoma rate of progression.  Am J Ophthalmol. 2008;  145 343-353
  • 17 Monhart M, Bebie H, Buerki E. Receiver operating characteristics of a novel method of visual field trend analysis.  Inv Ophthalmol Vis Sci. 2008;  49 E-Abstract 1154
  • 18 Software (OFA) Version 2.4.2 Octopus, Field, Analysis.
  • 19 Kovalska M, Grieshaber M C, Schotzau A. Detection of visual field progression in glaucoma.  Klin Monatsbl Augenheilkd. 2008;  225 342-345
  • 20 EyeSuite, Perimetry, 900 at Octopus. Manuals CD V 200 2009.
  • 21 Smith S D, Katz J, Quigley H A. Analysis of progressive change in automated visual fields in glaucoma.  Invest Ophthalmol Vis Sci. 1996;  37 1419-1428
  • 22 Buerki E, Monhart M. An update on Octopus perimetry.  Eur Ophthal Review. 2007;  12 20-22
  • 23 Monhart M, Bebie H, Buerki E et al. Calculation of the abnormal response area as an indicator of visual field changes.  Invest Ophthalmol Vis Sci. 2006;  47 E-Abstract 3987
  • 24 Wilkins M R, Fitzke F W, Khaw P T. Pointwise linear progression criteria and the detection of visual field change in a glaucoma trial.  Eye (Lond). 2006;  20 98-106
  • 25 Anton A, Yamagishi N, Zangwill L et al. Mapping structural to functional damage in glaucoma with standard automated perimetry and confocal scanning laser ophthalmoscopy.  Am J Ophthalmol. 1998;  125 436-446
  • 26 Asman P, Heijl A. Arcuate cluster analysis in glaucoma perimetry.  J Glaucoma. 1993;  2 13-20
  • 27 Gardiner S K, Johnson C A, Cioffi G A. Evaluation of the structure-function relationship in glaucoma.  Invest Ophthalmol Vis Sci. 2005;  46 3712-3717
  • 28 Garway-Heath D F, Poinoosawmy D, Fitzke F W et al. Mapping the visual field to the optic disc in normal tension glaucoma eyes.  Ophthalmology. 2000;  107 1809-1815
  • 29 Junemann A G, Martus P, Wisse M et al. Quantitative analysis of visual field and optic disk in glaucoma: retinal nerve fiber bundle-associated analysis.  Graefe’s Arch Ophthalmol. 2000;  238 306-314
  • 30 Mandava S, Zulauf M, Zeyen T et al. An evaluation of clusters in the glaucomatous visual field.  Am J Ophthalmol. 1993;  116 684-691
  • 31 Suzuki Y, Araie M, Ohashi Y. Sectorization of the central 30 degrees visual field in glaucoma.  Ophthalmology. 1993;  100 69-75
  • 32 Weber J, Ulrich H. A perimetric nerve fiber bundle map.  Int Ophthalmol. 1991;  15 193-200
  • 33 Wirtschafter J D, Becker W L, Howe J B et al. Glaucoma visual field analysis by computed profile of nerve fiber function in optic disc sectors.  Ophthalmology. 1982;  89 255-267
  • 34 Asman P, Heijl A. Glaucoma Hemifield Test. Automated visual field evaluation.  Arch Ophthalmol. 1992;  110 812-819
  • 35 Bengtsson B, Lindgren A, Heijl A et al. Perimetric probability maps to separate change caused by glaucoma from that caused by cataract.  Acta Ophthalmol Scand. 1997;  75 184-188
  • 36 Artes P H, Chauhan B C. Longitudinal changes in the visual field and optic disc in glaucoma.  Progress Retinal Eye Research. 2005;  24 333-354
  • 37 Artes P H, Nicolela M T, LeBlanc R P et al. Visual field progression in glaucoma: total versus pattern deviation analyses.  Invest Ophthalmol Vis Sci. 2005;  46 4600-4606
  • 38 Boden C, Blumenthal E Z, Pascual J et al. Patterns of glaucomatous visual field progression identified by three progression criteria.  Am J Ophthalmol. 2004;  138 1029-1036
  • 39 Katz J. A comparison of the pattern- and total deviation-based Glaucoma Change Probability programs.  Invest Ophthalmol Vis Sci. 2000;  41 1012-1016
  • 40 Manassakorn A, Nouri-Mahdavi K, Koucheki B et al. Pointwise linear regression analysis for detection of visual field progression with absolute versus corrected threshold sensitivities.  Invest Ophthalmol Vis Sci. 2006;  47 2896-2903
  • 41 Lee A C, Sample P A, Blumenthal E Z et al. Infrequent confirmation of visual field progression.  Ophthalmology. 2002;  109 1059-1065
  • 42 Carrillo M M, Artes P H, Nicolela M T et al. Effect of cataract extraction on the visual fields of patients with glaucoma.  Arch Ohthalmol. 2005;  123 929-932
  • 43 Asman P, Wild J M, Heijl A. Appearance of the pattern deviation map as a function of change in area of localized field loss.  Invest Ophthalmol Vis Sci. 2004;  45 3099-3106
  • 44 Drance S M. Diffuse visual field loss in open-angle glaucoma.  Ophthalmology. 1991;  98 1533-1538
  • 45 Henson D B, Artes P H, Chauhan B C. Diffuse loss of sensitivity in early glaucoma.  Invest Ophthalmol Vis Sci. 1999;  40 3147-3151
  • 46 Okuyama S, Takada S, Matsumoto C et al. Detection of local visual field deterioration in patients with diffuse imrpovement using cluster trends analysis. 18th International Visual Field and Imaging Symposium (IPS). Nara Japan; 2008
  • 47 Chauhan B C, Drance S M, Douglas G R. The use of visual field indices in detecting changes in the visual field in glaucoma.  Invest Ophthalmol Vis Sci. 1990;  31 512-520
  • 48 Nouri-Mahdavi K, Hoffman D, Ralli M et al. Comparison of methods to predict visual field progression in glaucoma.  Arch Ophthalmol. 2007;  125 1176-1181
  • 49 Asman P, Hejil A. Spatial correlations in cluster analysis for detection of glaucomatous field loss. In: Perimetry Update. Amsterdam: Kugler Publications; 1990 / 91: 317-318
  • 50 Bagga H, Greenfield D S, Knighton R W. Macular symmetry testing for glaucoma detection.  J Glaucoma. 2005;  14 358-363
  • 51 Kanadani F N, Hood D C, Grippo T M et al. Structural and functional assessment of the macular region in patients with glaucoma.  Br J Ophthalmol. 2006;  90 1393-1397
  • 52 Tan O, Li G, Lu A T et al. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis.  Ophthalmology. 2008;  115 949-956
  • 53 Heijl A, Bengtsson B, Chauhan B C et al. A comparison of visual field progression criteria of 3 major glaucoma trials in early manifest glaucoma trial patients.  Ophthalmology. 2008;  115 1557-1565
  • 54 Spry P G, Johnson C A. Senescent changes of the normal visual field: an age-old problem.  Optom Vis Sci. 2001;  78 436-441
  • 55 Arnalich-Montiel F, Casas-Liera P, Muñoz-Negrete F J et al. Performance of glaucoma progression analysis software in a glaucoma population.  Graefes Arch Clin Exp Ophthalmol. 2009;  247 391-397 . Epub 2008 Nov 4
  • 56 Wesselink C, Heeg G P, Jansonius N M. Glaucoma monitoring in a clinical setting: glaucoma progression analysis vs nonparametric progression analysis in den Groningen Longitudinal Claucoma Study.  Arch Ophthalmol. 2009;  127 270-274

Matthias C. Grieshaber, MD, FEBO

University Hospital of Basel, Department of Ophthalmology

Mittlere Strasse 91

CH-4031 Basel, Switzerland

Phone: ++ 41/61/2 65 87 87

Fax: ++ 41/61/2 65 87 45

Email: mgrieshaber@uhbs.ch