Z Gastroenterol 2011; 49 - P4_17
DOI: 10.1055/s-0030-1269672

Association of Mannose-Binding-Lectin-2-gene Polymorphism to the Development of Hepatitis-C-induced Hepatocellular Carcinoma

D Eurich 1, S Boas-Knoop 1, R Neuhaus 1, R Somasundaram 2, M Rühl 2, UP Neumann 3, P Neuhaus 4, M Bahra 1, D Seehofer 1
  • 1Department of General, Visceral, and Transplantation Surgery, Charité-Campus Virchow, Universitatsmedizin Berlin, Berlin
  • 2Department of Gastroenterology and Hepatology, Charité Campus Benjamin Franklin, Berlin
  • 3Department of Surgery, University Aachen, Aachen
  • 4Allgemein-, Viszeral- und Transplantationschirurgie, Experimentelle Chirurgie und Regenerative Medizin, Charité Universitätsmedizin Berlin, Berlin

Background:

Development of end-stage liver and graft disease is suspected to be partially determined by individual genetic background. Mannose-binding lectin-2 (MBL-2) is an important immunomodullatory factor, which is supposed to be involved in complement activation and oncogenesis. Genetic polymorphisms of MBL-2 alter the protein functionality. Aim of our study was to determine the prevalence of MBL-2-polymorphism (rs7096206) in HCV-induced hepatocellular carcinoma (HCC) based on histological analysis of explanted livers in patients undergoing liver transplantation.

Methods:

177 patients, who underwent liver transplantation for HCV-induced liver disease, were genotyped for MBL-2 by TaqMan genotyping assay. 62 patients with histologically confirmed HCC were compared to 115 patients without HCC. Growth patern, HCC-size, multilocularity and pre-transplant AFP-level were compared among the genotype groups.

Results:

The prevalence of GG and GC- genotypes was significantly higher among patients with HCC compared to tumour-free explanted livers (p=0.004; OR 2.5; 1.3–4.8). MBL-2-polymorphisms was significantly associated to the size of HCC (p=0.022), pre-transplant AFP-level (p=0.003), AFP-negativity (p=0.002) and bilobar growth (p=0.038). Conclusion: MBL-2-polymorphism seems to be involved in the development of pre-transplant HCV-induced HCC and might be a useful genetic risk factor for tumor development in patients with hepatitis-C.

Fig.1: HCC und MBL-2-genotype groups

Fig.2: Categorized pre-transplant AFP-levels among MBL-2-genotypes

Literature:

1. Rossol S. [Chronic HCV infections. A model disease for therapy, economics and social-medical aspects]. Gesundheitswesen 2007;69:146-150.2. Iadonato SPKatze MG. Genomics: Hepatitis C virus gets personal. Nature 2009;461:357-358.3. Block TM, Mehta AS, Fimmel CJJordan R. Molecular viral oncology of hepatocellular carcinoma. Oncogene 2003;22:5093-5107.4. Neumann UP, Berg T, Bahra M, Puhl G, Guckelberger O, Langrehr JM et al. Long-term outcome of liver transplants for chronic hepatitis C: a 10-year follow-up. Transplantation 2004;77:226-231.5. Schuppan D, Krebs A, Bauer MHahn EG. Hepatitis C and liver fibrosis. Cell Death Differ 2003;10 Suppl 1:S59-67.6. Ben-Ari Z. Role of cytokine gene polymorphism in recurrent HCV infection after liver transplantation. Liver Transpl 2006;12:1723-1724.7. Powell EE, Edwards-Smith CJ, Hay JL, Clouston AD, Crawford DH, Shorthouse C et al. Host genetic factors influence disease progression in chronic hepatitis C. Hepatology 2000;31:828-833.8. Bidwell JL, Wood NA, Morse HR, Olomolaiye OOLaundy GJ. Human cytokine gene nucleotide sequence alignments, 1998. Eur J Immunogenet 1998;25:83-265.9. Segat L, Fabris A, Padovan L, Milanese M, Pirulli D, Lupo F et al. MBL2 and MASP2 gene polymorphisms in patients with hepatocellular carcinoma. J Viral Hepat 2008;15:387-391.10. Bataller RBrenner DA. Liver fibrosis. J Clin Invest 2005;115:209-218.11. Wasmuth HE, Werth A, Mueller T, Berg T, Dietrich CG, Geier A et al. CC chemokine receptor 5 delta32 polymorphism in two independent cohorts of hepatitis C virus infected patients without hemophilia. J Mol Med 2004;82:64-69.12. Larsen F, Madsen HO, Sim RB, Koch CGarred P. Disease-associated mutations in human mannose-binding lectin compromise oligomerization and activity of the final protein. J Biol Chem 2004;279:21302-21311.13. Butler GS, Sim D, Tam E, Devine DOverall CM. Mannose-binding lectin (MBL) mutants are susceptible to matrix metalloproteinase proteolysis: potential role in human MBL deficiency. J Biol Chem 2002;277:17511-17519.14. Crosdale DJ, Ollier WE, Thomson W, Dyer PA, Jensenious J, Johnson RW et al. Mannose binding lectin (MBL) genotype distributions with relation to serum levels in UK Caucasoids. Eur J Immunogenet 2000;27:111-117.15. Madsen HO, Garred P, Thiel S, Kurtzhals JA, Lamm LU, Ryder LP et al. Interplay between promoter and structural gene variants control basal serum level of mannan-binding protein. J Immunol 1995;155:3013-3020.16. Sasaki K, Tsutsumi A, Wakamiya N, Ohtani K, Suzuki Y, Watanabe Y et al. Mannose-binding lectin polymorphisms in patients with hepatitis C virus infection. Scand J Gastroenterol 2000;35:960-965.17. Matsushita M, Hijikata M, Ohta Y, Iwata K, Matsumoto M, Nakao K et al. Hepatitis C virus infection and mutations of mannose-binding lectin gene MBL. Arch Virol 1998;143:645-651.18. Fildes JE, Shaw SM, Walker AH, McAlindon M, Williams SG, Keevil BG et al. Mannose-binding lectin deficiency offers protection from acute graft rejection after heart transplantation. J Heart Lung Transplant 2008;27:1353-1356.19. Gremion CCerny A. Hepatitis C virus and the immune system: a concise review. Rev Med Virol 2005;15:235-268.20. Steffensen R, Thiel S, Varming K, Jersild CJensenius JC. Detection of structural gene mutations and promoter polymorphisms in the mannan-binding lectin (MBL) gene by polymerase chain reaction with sequence-specific primers. J Immunol Methods 2000;241:33-42.21. Rantala A, Lajunen T, Juvonen R, Bloigu A, Silvennoinen-Kassinen S, Peitso A et al. Mannose-binding lectin concentrations, MBL2 polymorphisms, and susceptibility to respiratory tract infections in young men. J Infect Dis 2008;198:1247-1253.22. Cervera C, Balderramo D, Suarez B, Prieto J, Fuster F, Linares L et al. Donor mannose-binding lectin gene polymorphisms influence the outcome of liver transplantation. Liver Transpl 2009;15:1217-1224.23. Worthley DL, Johnson DF, Eisen DP, Dean MM, Heatley SL, Tung JP et al. Donor mannose-binding lectin deficiency increases the likelihood of clinically significant infection after liver transplantation. Clin Infect Dis 2009;48:410-417.24. Ben-Ari Z, Pappo O, Druzd T, Sulkes J, Klein T, Samra Z et al. Role of cytokine gene polymorphism and hepatic transforming growth factor beta1 expression in recurrent hepatitis C after liver transplantation. Cytokine 2004;27:7-14.25. Suppiah V, Moldovan M, Ahlenstiel G, Berg T, Weltman M, Abate ML et al. IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat Genet 2009;41:1100-1104.26. Tanaka Y, Nishida N, Sugiyama M, Kurosaki M, Matsuura K, Sakamoto N et al. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat Genet 2009;41:1105-1109.27. Kilpatrick DC, Delahooke TE, Koch C, Turner MLHayes PC. Mannan-binding lectin and hepatitis C infection. Clin Exp Immunol 2003;132:92-95.28. Brown KS, Ryder SD, Irving WL, Sim RBHickling TP. Mannan binding lectin and viral hepatitis. Immunol Lett 2007;108:34-44.29. Neumann U, Puhl G, Bahra M, Berg T, Langrehr JM, Neuhaus R et al. Treatment of patients with recurrent hepatitis C after liver transplantation with peginterferon alfa-2B plus ribavirin. Transplantation 2006;82:43-47.30. Manns MP, McHutchison JG, Gordon SC, Rustgi VK, Shiffman M, Reindollar R et al. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet 2001;358:958-965.31. Berenguer M. Recurrent allograft disease: viral hepatitis. Acta Gastroenterol Belg 2005;68:337-346.