Semin Hear 2010; 31(4): 326-349
DOI: 10.1055/s-0030-1268033
© Thieme Medical Publishers

Baha for Single-Sided Sensorineural Deafness: Review and Recent Technological Innovations

Mark C. Flynn1 , Carol A. Sammeth2 , Andre Sadeghi1 , George Cire2 , Glenn Halvarsson1
  • 1Cochlear Bone Anchored Solutions, Göteborg, Sweden
  • 2Cochlear Americas, Centennial, Colorado
Further Information

Publication History

Publication Date:
07 December 2010 (online)

ABSTRACT

An implantable bone conduction hearing system such as the Baha auditory osseointegrated implant is one amplification choice for patients with single-sided deafness (SSD). Several published reports outline the benefits that Baha provides for speech recognition in noise as well as subjective preference. Recent advances in Baha sound processor technology (e.g., Cochlear Baha BP100) provide technological advantages specifically for persons with SSD. In particular, fitting software is now used to measure in situ bone conduction thresholds through the Baha sound processor and to individually prescribe amplification settings based on the patient's hearing loss and degree of transcranial attenuation. Additionally, technology such as automatic directional microphones and noise reduction systems may provide improved hearing in noise solutions for patients with SSD. This article reviews the research on Baha for SSD and presents data on the advantages for this patient population using new features available in the Baha BP100 sound processor.

REFERENCES

  • 1 U.S. Food and Drug Administration .Approval 510(K) number K021837; Baha for single-sided deafness. Available at: http://www.accessdata.fda.gov/cdrh_docs/pdf2/k021837.pd Accessed October 13, 2010
  • 2 Lin L M, Bowditch S, Anderson M J, May B, Cox K M, Niparko J K. Amplification in the rehabilitation of unilateral deafness: speech in noise and directional hearing effects with bone-anchored hearing and contralateral routing of signal amplification.  Otol Neurotol. 2006;  27(2) 172-182
  • 3 Andersen H T, Schrøder S A, Bonding P. Unilateral deafness after acoustic neuroma surgery: subjective hearing handicap and the effect of the bone-anchored hearing aid.  Otol Neurotol. 2006;  27(6) 809-814
  • 4 Harford E, Barry J. A rehabilitative approach to the problem of unilateral hearing impairment: the contralateral routing of signals CROS.  J Speech Hear Disord. 1965;  30 121-138
  • 5 Bosman A J, Hol M K, Snik A F, Mylanus E A, Cremers C W. Bone-anchored hearing aids in unilateral inner ear deafness.  Acta Otolaryngol. 2003;  123(2) 258-260
  • 6 Niparko J K, Cox K M, Lustig L R. Comparison of the bone anchored hearing aid implantable hearing device with contralateral routing of offside signal amplification in the rehabilitation of unilateral deafness.  Otol Neurotol. 2003;  24(1) 73-78
  • 7 Sullivan R F. Transcranial ITE CROS.  Hear Instrum. 1988;  39 54
  • 8 Bishop C E, Eby T L. The current status of audiologic rehabilitation for profound unilateral sensorineural hearing loss.  Laryngoscope. 2010;  120(3) 552-556
  • 9 Shaw E A. Transformation of sound pressure level from the free field to the eardrum in the horizontal plane.  J Acoust Soc Am. 1974;  56(6) 1848-1861
  • 10 Ventry I M, Weinstein B E. The hearing handicap inventory for the elderly: a new tool.  Ear Hear. 1982;  3(3) 128-134
  • 11 Chiossoine-Kerdel J A, Baguley D M, Stoddart R L, Moffat D A. An investigation of the audiologic handicap associated with unilateral sudden sensorineural hearing loss.  Am J Otol. 2000;  21(5) 645-651
  • 12 Rigby P L, Shah S B, Jackler R K, Chung J H, Cooke D D. Acoustic neuroma surgery: outcome analysis of patient-perceived disability.  Am J Otol. 1997;  18(4) 427-435
  • 13 Humphriss R L, Baguley D M, Axon P R, Moffat D A. Change in hearing handicap after translabyrinthine vestibular schwannoma excision.  Otol Neurotol. 2004;  25(3) 371-378
  • 14 Giolas T G, Wark D J. Communication problems associated with unilateral hearing loss.  J Speech Hear Disord. 1967;  32(4) 336-343
  • 15 Häusler R, Colburn S, Marr E. Sound localization in subjects with impaired hearing. Spatial-discrimination and interaural-discrimination tests.  Acta Otolaryngol Suppl. 1983;  400 1-62
  • 16 Vaneecloo F M, Hanson J N, Laroche C, Vincent C, Dehaussy J. [Prosthetic rehabilitation of unilateral anakusis. Study with stereoaudiometry].  Ann Otolaryngol Chir Cervicofac. 2000;  117(6) 410-417
  • 17 Vaneecloo F M, Ruzza I, Hanson J N et al.. [The monaural pseudo-stereophonic hearing aid (BAHA) in unilateral total deafness: a study of 29 patients].  Rev Laryngol Otol Rhinol (Bord). 2001;  122(5) 343-350
  • 18 Wazen J J, Spitzer J B, Ghossaini S N et al. Transcranial contralateral cochlear stimulation in unilateral deafness.  Otolaryngol Head Neck Surg. 2003;  129(3) 248-254
  • 19 Hol M K, Bosman A J, Snik A F, Mylanus E A, Cremers C W. Bone-anchored hearing aid in unilateral inner ear deafness: a study of 20 patients.  Audiol Neurootol. 2004;  9(5) 274-281
  • 20 Hol M K, Bosman A J, Snik A F, Mylanus E A, Cremers C W. Bone-anchored hearing aids in unilateral inner ear deafness: an evaluation of audiometric and patient outcome measurements.  Otol Neurotol. 2005;  26(5) 999-1006
  • 21 Linstrom C J, Silverman C A, Yu G P. Efficacy of the bone-anchored hearing aid for single-sided deafness.  Laryngoscope. 2009;  119(4) 713-720
  • 22 Yuen H W, Bodmer D, Smilsky K, Nedzelski J M, Chen J M. Management of single-sided deafness with the bone-anchored hearing aid.  Otolaryngol Head Neck Surg. 2009;  141(1) 16-23
  • 23 Dillon H. Hearing Aids. New York, NY; Thieme 2001
  • 24 Wazen J J, Ghossaini S N, Spitzer J B, Kuller M. Localization by unilateral BAHA users.  Otolaryngol Head Neck Surg. 2005;  132(6) 928-932
  • 25 Vermiglio A, Nilsson M, Soli S, Freed D. Development of a virtual test of sound localization: the source azimuth identification in noise test: (SAINT). Paper presented at: American Academy of Audiology April 3–6, 1998 Los Angeles, CA;
  • 26 Cox R M, Alexander G C. The abbreviated profile of hearing aid benefit.  Ear Hear. 1995;  16(2) 176-186
  • 27 Gatehouse S. Glasgow hearing aid benefit profile: derivation and validation of a client-centered outcome measure for hearing-aid services.  J Am Acad Audiol. 1999;  10 80-103
  • 28 Robinson K, Gatehouse S, Browning G G. Measuring patient benefit from otorhinolaryngological surgery and therapy.  Ann Otol Rhinol Laryngol. 1996;  105(6) 415-422
  • 29 McLarnon C M, Davison T, Johnson I J. Bone-anchored hearing aid: comparison of benefit by patient subgroups.  Laryngoscope. 2004;  114(5) 942-944
  • 30 Cox R M, Stephens D, Kramer S E. Translations of the international outcome inventory for hearing aids (IOI-HA).  Int J Audiol. 2002;  41(1) 3-26
  • 31 Davison T, Leese D, Marley S, Johnson I J. Clinical impressions of a new bone anchored hearing aid processor. Paper presented at: 2nd International symposium on bone conduction hearing—craniofacial osseointegration June 11–13, 2009 Göteborg, Sweden;
  • 32 Stenfelt S. Bilateral fitting of BAHAs and BAHA fitted in unilateral deaf persons: acoustical aspects.  Int J Audiol. 2005;  44(3) 178-189
  • 33 Nolan M, Lyon D J. Transcranial attenuation in bone conduction audiometry.  J Laryngol Otol. 1981;  95(6) 597-608
  • 34 Stenfelt S, Goode R L. Transmission properties of bone conducted sound: measurements in cadaver heads.  J Acoust Soc Am. 2005;  118(4) 2373-2391
  • 35 Stenfelt S, Håkansson B, Tjellström A. Vibration characteristics of bone conducted sound in vitro.  J Acoust Soc Am. 2000;  107(1) 422-431
  • 36 Verstraeten N, Zarowski A J, Somers T, Riff D, Offeciers E F. Comparison of the audiologic results obtained with the bone-anchored hearing aid attached to the headband, the testband, and to the “snap” abutment.  Otol Neurotol. 2009;  30(1) 70-75
  • 37 Håkansson B, Tjellström A, Rosenhall U. Hearing thresholds with direct bone conduction versus conventional bone conduction.  Scand Audiol. 1984;  13(1) 3-13
  • 38 Stenfelt S, Håkansson B. Air versus bone conduction: an equal loudness investigation.  Hear Res. 2002;  167(1–2) 1-12
  • 39 Byrne D, Dillon H, Ching T, Katsch R, Keidser G. NAL-NL1 procedure for fitting nonlinear hearing aids: characteristics and comparisons with other procedures.  J Am Acad Audiol. 2001;  12(1) 37-51
  • 40 Scollie S, Seewald R, Cornelisse L et al. The desired sensation level multistage input/output algorithm.  Trends Amplif. 2005;  9(4) 159-197
  • 41 Snyder J M. Interaural attenuation characteristics in audiometry.  Laryngoscope. 1973;  83(11) 1847-1855
  • 42 Feddersen W E, Sandel T T, Teas D C, Jeffress L A. Localization of high frequency tones.  J Acoust Soc Am. 1957;  29 988-991
  • 43 Pfiffner F, Kompis M, Flynn M C, Åsnes K, Arnold A, Stieger C. Benefits of low frequency attenuation of Baha® in single sided sensorineural deafness.  Ear Hear. 2010;  , In press
  • 44 Bentler R A. Effectiveness of directional microphones and noise reduction schemes in hearing aids: a systematic review of the evidence.  J Am Acad Audiol. 2005;  16(7) 473-484
  • 45 Walden B E, Surr R K, Cord M T. Real-world performance of directional microphone hearing aids.  The Hearing Journal. 2003;  56(11) 40-47
  • 46 Flynn M C. Maintaining the directional advantage in open fittings.  The Hearing Review. 2004;  11(11) 32-36
  • 47 Kompis M, Krebs M, Häusler R. Speech understanding in quiet and in noise with the bone-anchored hearing aids Baha Compact and Baha Divino.  Acta Otolaryngol. 2007;  127(8) 829-835
  • 48 Oeding K, Valente M, Kerckhoff J. The effectiveness of the directional microphone in the Baha Divino.  J Am Acad Audiol. , In press
  • 49 Blamey P J, Fiket H J, Steele B R. Improving speech intelligibility in background noise with an adaptive directional microphone.  J Am Acad Audiol. 2006;  17(7) 519-530
  • 50 Bentler R, Palmer C, Mueller H G. Evaluation of a second-order directional microphone hearing aid: I. Speech perception outcomes.  J Am Acad Audiol. 2006;  17(3) 179-189
  • 51 Chung K. Challenges and recent developments in hearing aids. Part I. Speech understanding in noise, microphone technologies and noise reduction algorithms.  Trends Amplif. 2004;  8(3) 83-124
  • 52 Mackenzie E, Lutman M E. Speech recognition and comfort using hearing instruments with adaptive directional characteristics in asymmetric listening conditions.  Ear Hear. 2005;  26(6) 669-679
  • 53 Ricketts T, Henry P. Evaluation of an adaptive, directional-microphone hearing aid.  Int J Audiol. 2002;  41(2) 100-112
  • 54 Kuk F, Keenan D, Lau C C, Ludvigsen C. Performance of a fully adaptive directional microphone to signals presented from various azimuths.  J Am Acad Audiol. 2005;  16(6) 333-347
  • 55 Maj J B, Wouters J, Moonen M. Noise reduction results of an adaptive filtering technique for dual-microphone behind-the-ear hearing aids.  Ear Hear. 2004;  25(3) 215-229
  • 56 Flynn M C, Sadeghi A, Halvarsson G. Results of the first clinical evaluation of Cochlear™ Baha® BP100. Göteborg, Sweden; Cochlear Bone Anchored Solutions 2009
  • 57 Hällgren M, Larsby B, Arlinger S. A Swedish version of the hearing in noise test (HINT) for measurement of speech recognition.  Int J Audiol. 2006;  45(4) 227-237
  • 58 Schum D. Noise-reduction circuitry in hearing aids: (2) goals and current strategies.  The Hearing Journal. 2003;  56(6) 32-41
  • 59 Bentler R, Wu Y H, Kettel J, Hurtig R. Digital noise reduction: outcomes from laboratory and field studies.  Int J Audiol. 2008;  47(8) 447-460
  • 60 Alcántara J L, Moore B C, Kühnel V, Launer S. Evaluation of the noise reduction system in a commercial digital hearing aid.  Int J Audiol. 2003;  42(1) 34-42
  • 61 Boymans M, Dreschler W A. Field trials using a digital hearing aid with active noise reduction and dual-microphone directionality.  Audiology. 2000;  39(5) 260-268

Mark FlynnPh.D. 

Cochlear Bone Anchored Solutions, P.O. Box 82

SE-435 22 Mölnlycke, Göteborg, Sweden

Email: mflynn@cochlear.com