Semin Liver Dis 2010; 30(4): 391-401
DOI: 10.1055/s-0030-1267539
© Thieme Medical Publishers

Novel Insights into the Pathophysiology of Nonalcoholic Fatty Liver Disease

Ariel E. Feldstein1 , 2 , 3
  • 1Department of Cell Biology, Lerner Research Institute Cleveland Clinic College of Medicine of CWRU, Cleveland Clinic, Cleveland, Ohio
  • 2Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, Cleveland, Ohio
  • 3Department of Pediatric Gastroenterology, Cleveland Clinic, Cleveland, Ohio
Further Information

Publication History

Publication Date:
19 October 2010 (online)

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is currently the most common form of chronic liver disease affecting both adults and children in the United States and many other parts of the world. NAFLD encompasses a wide spectrum of conditions associated with overaccumulation of lipids in the liver. It is strongly associated with obesity and insulin resistance and has been growingly recognized as an independent risk factor for cardiovascular disease. In this review, recently uncovered novel aspects of the molecular events responsible for the development and progression of this highly prevalent and potentially serious disease are discussed. These studies bring new insights that may significantly impact the clinical approach to patients with NAFLD, from novel diagnostics to innovative therapeutic strategies.

REFERENCES

  • 1 Angulo P. Nonalcoholic fatty liver disease.  N Engl J Med. 2002;  346(16) 1221-1231
  • 2 Wieckowska A, Feldstein A E. Nonalcoholic fatty liver disease in the pediatric population: a review.  Curr Opin Pediatr. 2005;  17(5) 636-641
  • 3 Brunt E M, Janney C G, Di Bisceglie A M, Neuschwander-Tetri B A, Bacon B R. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions.  Am J Gastroenterol. 1999;  94(9) 2467-2474
  • 4 Adams L A, Lymp J F, St Sauver J et al.. The natural history of nonalcoholic fatty liver disease: a population-based cohort study.  Gastroenterology. 2005;  129(1) 113-121
  • 5 Ekstedt M, Franzén L E, Mathiesen U L et al.. Long-term follow-up of patients with NAFLD and elevated liver enzymes.  Hepatology. 2006;  44(4) 865-873
  • 6 Browning J D, Horton J D. Molecular mediators of hepatic steatosis and liver injury.  J Clin Invest. 2004;  114(2) 147-152
  • 7 Donnelly K L, Smith C I, Schwarzenberg S J, Jessurun J, Boldt M D, Parks E J. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease.  J Clin Invest. 2005;  115(5) 1343-1351
  • 8 Bieghs V, Wouters K, van Gorp P J et al.. Role of scavenger receptor A and CD36 in diet-induced nonalcoholic steatohepatitis in hyperlipidemic mice.  Gastroenterology. 2010;  138(7) 2477-2486, 2486, e1–e3
  • 9 Zhou J, Febbraio M, Wada T et al.. Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis.  Gastroenterology. 2008;  134(2) 556-567
  • 10 Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice.  J Clin Invest. 2008;  118(3) 829-838
  • 11 Clark J M, Brancati F L, Diehl A M. Nonalcoholic fatty liver disease.  Gastroenterology. 2002;  122(6) 1649-1657
  • 12 Tilg H, Moschen A R. Insulin resistance, inflammation, and non-alcoholic fatty liver disease.  Trends Endocrinol Metab. 2008;  19(10) 371-379
  • 13 Shoelson S E, Lee J, Goldfine A B. Inflammation and insulin resistance.  J Clin Invest. 2006;  116(7) 1793-1801
  • 14 Wellen K E, Hotamisligil G S. Inflammation, stress, and diabetes.  J Clin Invest. 2005;  115(5) 1111-1119
  • 15 Tilg H, Moschen A R. Inflammatory mechanisms in the regulation of insulin resistance.  Mol Med. 2008;  14(3-4) 222-231
  • 16 Weisberg S P, McCann D, Desai M, Rosenbaum M, Leibel R L, Ferrante Jr A W. Obesity is associated with macrophage accumulation in adipose tissue.  J Clin Invest. 2003;  112(12) 1796-1808
  • 17 Weisberg S P, Hunter D, Huber R et al.. CCR2 modulates inflammatory and metabolic effects of high-fat feeding.  J Clin Invest. 2006;  116(1) 115-124
  • 18 Hevener A L, Olefsky J M, Reichart D et al.. Macrophage PPAR gamma is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones.  J Clin Invest. 2007;  117(6) 1658-1669
  • 19 Lumeng C N, Bodzin J L, Saltiel A R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization.  J Clin Invest. 2007;  117(1) 175-184
  • 20 Hirosumi J, Tuncman G, Chang L et al.. A central role for JNK in obesity and insulin resistance.  Nature. 2002;  420(6913) 333-336
  • 21 Tuncman G, Hirosumi J, Solinas G, Chang L, Karin M, Hotamisligil G S. Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance.  Proc Natl Acad Sci U S A. 2006;  103(28) 10741-10746
  • 22 Aguirre V, Uchida T, Yenush L, Davis R, White M F. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307).  J Biol Chem. 2000;  275(12) 9047-9054
  • 23 Sabio G, Das M, Mora A et al.. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance.  Science. 2008;  322(5907) 1539-1543
  • 24 Kim J Y, van de Wall E, Laplante M et al.. Obesity-associated improvements in metabolic profile through expansion of adipose tissue.  J Clin Invest. 2007;  117(9) 2621-2637
  • 25 Ye J, Gao Z, Yin J, He Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice.  Am J Physiol Endocrinol Metab. 2007;  293(4) E1118-E1128
  • 26 Pang C, Gao Z, Yin J, Zhang J, Jia W, Ye J. Macrophage infiltration into adipose tissue may promote angiogenesis for adipose tissue remodeling in obesity.  Am J Physiol Endocrinol Metab. 2008;  295(2) E313-E322
  • 27 Lauber K, Bohn E, Kröber S M et al.. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal.  Cell. 2003;  113(6) 717-730
  • 28 Strissel K J, Stancheva Z, Miyoshi H et al.. Adipocyte death, adipose tissue remodeling, and obesity complications.  Diabetes. 2007;  56(12) 2910-2918
  • 29 Murano I, Barbatelli G, Parisani V et al.. Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice.  J Lipid Res. 2008;  49(7) 1562-1568
  • 30 Cinti S, Mitchell G, Barbatelli G et al.. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans.  J Lipid Res. 2005;  46(11) 2347-2355
  • 31 Kroemer G, Galluzzi L, Vandenabeele P Nomenclature Committee on Cell Death 2009 et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009.  Cell Death Differ. 2009;  16(1) 3-11
  • 32 Alkhouri N, Gornicka A, Berk M P et al.. Adipocyte apoptosis, a link between obesity, insulin resistance, and hepatic steatosis.  J Biol Chem. 2010;  285(5) 3428-3438
  • 33 Guicciardi M E, Gores G J. Life and death by death receptors.  FASEB J. 2009;  23(6) 1625-1637
  • 34 Wueest S, Rapold R A, Schumann D M et al.. Deletion of Fas in adipocytes relieves adipose tissue inflammation and hepatic manifestations of obesity in mice.  J Clin Invest. 2010;  120(1) 191-202
  • 35 Li P, Lu M, Nguyen M T et al.. Functional heterogeneity of CD11c-positive adipose tissue macrophages in diet-induced obese mice.  J Biol Chem. 2010;  285(20) 15333-15345
  • 36 Day C P, James O F. Steatohepatitis: a tale of two “hits”?.  Gastroenterology. 1998;  114(4) 842-845
  • 37 Clouston A D, Powell E E. Nonalcoholic fatty liver disease: is all the fat bad?.  Intern Med J. 2004;  34(4) 187-191
  • 38 Monetti M, Levin M C, Watt M J et al.. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver.  Cell Metab. 2007;  6(1) 69-78
  • 39 Koliwad S K, Streeper R S, Monetti M et al.. DGAT1-dependent triacylglycerol storage by macrophages protects mice from diet-induced insulin resistance and inflammation.  J Clin Invest. 2010;  120(3) 756-767
  • 40 Amaro A, Fabbrini E, Kars M et al.. Dissociation between intrahepatic triglyceride content and insulin resistance in familial hypobetalipoproteinemia.  Gastroenterology. 2010;  139(1) 149-153
  • 41 Day C P. The potential role of genes in nonalcoholic fatty liver disease.  Clin Liver Dis. 2004;  8(3) 673-691, xi
  • 42 Romeo S, Kozlitina J, Xing C et al.. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease.  Nat Genet. 2008;  40(12) 1461-1465
  • 43 He S, McPhaul C, Li J Z et al.. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis.  J Biol Chem. 2010;  285(9) 6706-6715
  • 44 Petersen K F, Dufour S, Hariri A et al.. Apolipoprotein C3 gene variants in nonalcoholic fatty liver disease.  N Engl J Med. 2010;  362(12) 1082-1089
  • 45 Alkhouri N, Dixon L J, Feldstein A E. Lipotoxicity in nonalcoholic fatty liver disease: not all lipids are created equal.  Expert Rev Gastroenterol Hepatol. 2009;  3(4) 445-451
  • 46 Trauner M, Arrese M, Wagner M. Fatty liver and lipotoxicity.  Biochim Biophys Acta. 2010;  1801(3) 299-310
  • 47 Yamaguchi K, Yang L, McCall S et al.. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis.  Hepatology. 2007;  45(6) 1366-1374
  • 48 Li Z Z, Berk M, McIntyre T M, Feldstein A E. Hepatic lipid partitioning and liver damage in nonalcoholic fatty liver disease: role of stearoyl-CoA desaturase.  J Biol Chem. 2009;  284(9) 5637-5644
  • 49 Garcia-Ruiz C, Mari M, Colell A et al.. Mitochondrial cholesterol in health and disease.  Histol Histopathol. 2009;  24(1) 117-132
  • 50 Marí M, Colell A, Morales A et al.. Mechanism of mitochondrial glutathione-dependent hepatocellular susceptibility to TNF despite NF-kappaB activation.  Gastroenterology. 2008;  134(5) 1507-1520
  • 51 Marí M, Caballero F, Colell A et al.. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis.  Cell Metab. 2006;  4(3) 185-198
  • 52 Puri P, Baillie R A, Wiest M M et al.. A lipidomic analysis of nonalcoholic fatty liver disease.  Hepatology. 2007;  46(4) 1081-1090
  • 53 Duncan R E, El-Sohemy A, Archer M C. Dietary factors and the regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase: implications for breast cancer and development.  Mol Nutr Food Res. 2005;  49(2) 93-100
  • 54 Duncan R E, El-Sohemy A, Archer M C. Regulation of HMG-CoA reductase in MCF-7 cells by genistein, EPA, and DHA, alone and in combination with mevastatin.  Cancer Lett. 2005;  224(2) 221-228
  • 55 Caballero F, Fernández A, De Lacy A M, Fernández-Checa J C, Caballería J, García-Ruiz C. Enhanced free cholesterol, SREBP-2 and StAR expression in human NASH.  J Hepatol. 2009;  50(4) 789-796
  • 56 Li Z, Yang S, Lin H et al.. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease.  Hepatology. 2003;  37(2) 343-350
  • 57 Feldstein A E, Canbay A, Guicciardi M E, Higuchi H, Bronk S F, Gores G J. Diet associated hepatic steatosis sensitizes to Fas mediated liver injury in mice.  J Hepatol. 2003;  39(6) 978-983
  • 58 Tomita K, Tamiya G, Ando S et al.. Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice.  Gut. 2006;  55(3) 415-424
  • 59 Xu A, Wang Y, Keshaw H, Xu L Y, Lam K S, Cooper G J. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice.  J Clin Invest. 2003;  112(1) 91-100
  • 60 Crespo J, Cayón A, Fernández-Gil P et al.. Gene expression of tumor necrosis factor alpha and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients.  Hepatology. 2001;  34(6) 1158-1163
  • 61 Hui J M, Hodge A, Farrell G C, Kench J G, Kriketos A, George J. Beyond insulin resistance in NASH: TNF-alpha or adiponectin?.  Hepatology. 2004;  40(1) 46-54
  • 62 Musso G, Gambino R, Durazzo M et al.. Adipokines in NASH: postprandial lipid metabolism as a link between adiponectin and liver disease.  Hepatology. 2005;  42(5) 1175-1183
  • 63 Abiru S, Migita K, Maeda Y et al.. Serum cytokine and soluble cytokine receptor levels in patients with non-alcoholic steatohepatitis.  Liver Int. 2006;  26(1) 39-45
  • 64 Kugelmas M, Hill D B, Vivian B, Marsano L, McClain C J. Cytokines and NASH: a pilot study of the effects of lifestyle modification and vitamin E.  Hepatology. 2003;  38(2) 413-419
  • 65 Feldstein A E, Werneburg N W, Canbay A et al.. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway.  Hepatology. 2004;  40(1) 185-194
  • 66 Feldstein A E, Werneburg N W, Li Z, Bronk S F, Gores G J. Bax inhibition protects against free fatty acid-induced lysosomal permeabilization.  Am J Physiol Gastrointest Liver Physiol. 2006;  290(6) G1339-G1346
  • 67 Li Z, Berk M, McIntyre T M, Gores G J, Feldstein A E. The lysosomal-mitochondrial axis in free fatty acid-induced hepatic lipotoxicity.  Hepatology. 2008;  47(5) 1495-1503
  • 68 Shimomura I, Shimano H, Korn B S, Bashmakov Y, Horton J D. Nuclear sterol regulatory element-binding proteins activate genes responsible for the entire program of unsaturated fatty acid biosynthesis in transgenic mouse liver.  J Biol Chem. 1998;  273(52) 35299-35306
  • 69 Shimomura I, Bashmakov Y, Horton J D. Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus.  J Biol Chem. 1999;  274(42) 30028-30032
  • 70 Endo M, Masaki T, Seike M, Yoshimatsu H. TNF-alpha induces hepatic steatosis in mice by enhancing gene expression of sterol regulatory element binding protein-1c (SREBP-1c).  Exp Biol Med (Maywood). 2007;  232(5) 614-621
  • 71 Kaser S, Moschen A, Cayon A et al.. Adiponectin and its receptors in non-alcoholic steatohepatitis.  Gut. 2005;  54(1) 117-121
  • 72 Moschen A R, Molnar C, Wolf A M et al.. Effects of weight loss induced by bariatric surgery on hepatic adipocytokine expression.  J Hepatol. 2009;  51(4) 765-777
  • 73 Lagathu C, Bastard J P, Auclair M, Maachi M, Capeau J, Caron M. Chronic interleukin-6 (IL-6) treatment increased IL-6 secretion and induced insulin resistance in adipocyte: prevention by rosiglitazone.  Biochem Biophys Res Commun. 2003;  311(2) 372-379
  • 74 Klover P J, Zimmers T A, Koniaris L G, Mooney R A. Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice.  Diabetes. 2003;  52(11) 2784-2789
  • 75 Senn J J, Klover P J, Nowak I A et al.. Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes.  J Biol Chem. 2003;  278(16) 13740-13746
  • 76 Pradhan A D, Manson J E, Rifai N, Buring J E, Ridker P M. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus.  JAMA. 2001;  286(3) 327-334
  • 77 Haukeland J W, Damås J K, Konopski Z et al.. Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2.  J Hepatol. 2006;  44(6) 1167-1174
  • 78 Cai D, Yuan M, Frantz D F et al.. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB.  Nat Med. 2005;  11(2) 183-190
  • 79 Wieckowska A, Papouchado B G, Li Z, Lopez R, Zein N N, Feldstein A E. Increased hepatic and circulating interleukin-6 levels in human nonalcoholic steatohepatitis.  Am J Gastroenterol. 2008;  103(6) 1372-1379
  • 80 El-Assal O, Hong F, Kim W H, Radaeva S, Gao B. IL-6-deficient mice are susceptible to ethanol-induced hepatic steatosis: IL-6 protects against ethanol-induced oxidative stress and mitochondrial permeability transition in the liver.  Cell Mol Immunol. 2004;  1(3) 205-211
  • 81 Cressman D E, Greenbaum L E, DeAngelis R A et al.. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice.  Science. 1996;  274(5291) 1379-1383
  • 82 Jin X, Zimmers T A, Perez E A, Pierce R H, Zhang Z, Koniaris L G. Paradoxical effects of short- and long-term interleukin-6 exposure on liver injury and repair.  Hepatology. 2006;  43(3) 474-484
  • 83 Nieto N. Oxidative-stress and IL-6 mediate the fibrogenic effects of [corrected] Kupffer cells on stellate cells.  Hepatology. 2006;  44(6) 1487-1501
  • 84 Milner K L, van der Poorten D, Xu A et al.. Adipocyte fatty acid binding protein levels relate to inflammation and fibrosis in nonalcoholic fatty liver disease.  Hepatology. 2009;  49(6) 1926-1934
  • 85 Schroeder F, Jolly C A, Cho T H, Frolov A. Fatty acid binding protein isoforms: structure and function.  Chem Phys Lipids. 1998;  92(1) 1-25
  • 86 Hui X, Li H, Zhou Z et al.. Adipocyte fatty acid-binding protein modulates inflammatory responses in macrophages through a positive feedback loop involving c-Jun NH2-terminal kinases and activator protein-1.  J Biol Chem. 2010;  285(14) 10273-10280
  • 87 Wieckowska A, McCullough A J, Feldstein A E. Noninvasive diagnosis and monitoring of nonalcoholic steatohepatitis: present and future.  Hepatology. 2007;  46(2) 582-589
  • 88 Feldstein A E, Canbay A, Angulo P et al.. Hepatocyte apoptosis and Fas expression are prominent features of human nonalcoholic steatohepatitis.  Gastroenterology. 2003;  125(2) 437-443
  • 89 Feldstein A E, Gores G J. Apoptosis in alcoholic and nonalcoholic steatohepatitis.  Front Biosci. 2005;  10 3093-3099
  • 90 Barreyro F J, Kobayashi S, Bronk S F, Werneburg N W, Malhi H, Gores G J. Transcriptional regulation of Bim by FoxO3A mediates hepatocyte lipoapoptosis.  J Biol Chem. 2007;  282(37) 27141-27154
  • 91 Masuoka H C, Mott J, Bronk S F et al.. Mcl-1 degradation during hepatocyte lipoapoptosis.  J Biol Chem. 2009;  284(44) 30039-30048
  • 92 Cazanave S C, Gores G J. Mechanisms and clinical implications of hepatocyte lipoapoptosis.  Clin Lipidol. 2010;  5(1) 71-85
  • 93 Witek R P, Stone W C, Karaca F G et al.. Pan-caspase inhibitor VX-166 reduces fibrosis in an animal model of nonalcoholic steatohepatitis.  Hepatology. 2009;  50(5) 1421-1430
  • 94 Wieckowska A, Zein N N, Yerian L M, Lopez A R, McCullough A J, Feldstein A E. In vivo assessment of liver cell apoptosis as a novel biomarker of disease severity in nonalcoholic fatty liver disease.  Hepatology. 2006;  44(1) 27-33
  • 95 Younossi Z M, Jarrar M, Nugent C et al.. A novel diagnostic biomarker panel for obesity-related nonalcoholic steatohepatitis (NASH).  Obes Surg. 2008;  18(11) 1430-1437
  • 96 Malik R, Chang M, Bhaskar K et al.. The clinical utility of biomarkers and the nonalcoholic steatohepatitis CRN liver biopsy scoring system in patients with nonalcoholic fatty liver disease.  J Gastroenterol Hepatol. 2009;  24(4) 564-568
  • 97 Diab D L, Yerian L, Schauer P et al.. Cytokeratin 18 fragment levels as a noninvasive biomarker for nonalcoholic steatohepatitis in bariatric surgery patients.  Clin Gastroenterol Hepatol. 2008;  6(11) 1249-1254
  • 98 Horoz M, Bolukbas C, Bolukbas F F et al.. Measurement of the total antioxidant response using a novel automated method in subjects with nonalcoholic steatohepatitis.  BMC Gastroenterol. 2005;  5 35
  • 99 Chalasani N, Deeg M A, Crabb D W. Systemic levels of lipid peroxidation and its metabolic and dietary correlates in patients with nonalcoholic steatohepatitis.  Am J Gastroenterol. 2004;  99(8) 1497-1502
  • 100 Bonnefont-Rousselot D, Ratziu V, Giral P, Charlotte F, Beucler I, Poynard T. Lido Study Group . Blood oxidative stress markers are unreliable markers of hepatic steatosis.  Aliment Pharmacol Ther. 2006;  23(1) 91-98
  • 101 Mantena S K, King A L, Andringa K K, Eccleston H B, Bailey S M. Mitochondrial dysfunction and oxidative stress in the pathogenesis of alcohol- and obesity-induced fatty liver diseases.  Free Radic Biol Med. 2008;  44(7) 1259-1272
  • 102 Videla L A, Rodrigo R, Araya J, Poniachik J. Oxidative stress and depletion of hepatic long-chain polyunsaturated fatty acids may contribute to nonalcoholic fatty liver disease.  Free Radic Biol Med. 2004;  37(9) 1499-1507
  • 103 Higuchi H, Grambihler A, Canbay A, Bronk S F, Gores G J. Bile acids up-regulate death receptor 5/TRAIL-receptor 2 expression via a c-Jun N-terminal kinase-dependent pathway involving Sp1.  J Biol Chem. 2004;  279(1) 51-60
  • 104 Gao D, Wei C, Chen L, Huang J, Yang S, Diehl A M. Oxidative DNA damage and DNA repair enzyme expression are inversely related in murine models of fatty liver disease.  Am J Physiol Gastrointest Liver Physiol. 2004;  287(5) G1070-G1077
  • 105 Albano E, Mottaran E, Occhino G, Reale E, Vidali M. Review article: role of oxidative stress in the progression of non-alcoholic steatosis.  Aliment Pharmacol Ther. 2005;  22(Suppl 2) 71-73
  • 106 Bataller R, Brenner D A. Liver fibrosis.  J Clin Invest. 2005;  115(2) 209-218
  • 107 Urtasun R, Nieto N. [Hepatic stellate cells and oxidative stress].  Rev Esp Enferm Dig. 2007;  99(4) 223-230
  • 108 Sanyal A J, Chalasani N, Kowdley K V NASH CRN et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis.  N Engl J Med. 2010;  362(18) 1675-1685
  • 109 Dryden Jr G W, Deaciuc I, Arteel G, McClain C J. Clinical implications of oxidative stress and antioxidant therapy.  Curr Gastroenterol Rep. 2005;  7(4) 308-316
  • 110 Di Sario A, Candelaresi C, Omenetti A, Benedetti A. Vitamin E in chronic liver diseases and liver fibrosis.  Vitam Horm. 2007;  76 551-573
  • 111 Chalasani N P, Sanyal A J, Kowdley K V NASH CRN Research Group et al. Pioglitazone versus vitamin E versus placebo for the treatment of non-diabetic patients with non-alcoholic steatohepatitis: PIVENS trial design.  Contemp Clin Trials. 2009;  30(1) 88-96
  • 112 Nobili V, Manco M, Devito R et al.. Lifestyle intervention and antioxidant therapy in children with nonalcoholic fatty liver disease: a randomized, controlled trial.  Hepatology. 2008;  48(1) 119-128
  • 113 Feldstein A E, Lopez R, Abu-Rajab Tamimi T et al.. Mass spectrometric profiling of oxidized lipid products in human nonalcoholic fatty liver disease and nonalcoholic steatohepatitis.  J Lipid Res. 2010;  51(10) 3046-3054

Ariel FeldsteinM.D. 

Department of Cell Biology, Lerner Research Institute, Cleveland Clinic College of Medicine of CWRU

9500 Euclid Avenue, Cleveland, Ohio 44195

Email: feldsta@ccf.org

    >