Int J Sports Med 2011; 32(1): 1-6
DOI: 10.1055/s-0030-1267192
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Incidence of the Plateau at V˙O2max is Dependent on the Anaerobic Capacity

D. Gordon1 , S. Hopkins2 , C. King2 , D. Keiller1 , R. J. Barnes2
  • 1Anglia Ruskin University, Life Sciences, Cambridge, United Kingdom
  • 2Cambridge University, Physiology, Development and Neuroscience, Cambridge, United Kingdom
Further Information

Publication History

accepted after revision August 31, 2010

Publication Date:
11 November 2010 (online)

Abstract

The purpose of this study was to address if there is an association between the plateau at V˙O2max and the anaerobic capacity. 9 well-trained cyclists (age 22.2±3.5 yr, height 182.5±5.0 cm, mass 75.7±8.7 kg, V˙O2max 59.3±4.8 ml.kg−1.min−1completed both an incremental step test of 20 W.min−1 starting at 120 W for determination of maximal oxygen uptake (MOU) and a maximally accumulated oxygen deficit (MAOD) trial at 125% MOU for estimation of anaerobic capacity. Throughout all trials expired air was recorded on a breath-by-breath basis. A significant inverse relationship was observed between the MAOD and the Δ V˙O2 during the final 60 s of the MOU test (r=−0.77, p=0.008). Of the 9 participants it was noted that only 4 exhibited a plateau at MOU. There were non-significant differences for V˙O2 and the associated secondary criteria for those exhibiting a plateau and the non-plateau responders, despite a significant difference for MAOD (p=0.041) between groups. These data suggest that incidence of the plateau at MOU is dependent on anaerobic substrate metabolism and that ranges of responses reported in the literature may be a consequence of variations in anaerobic capacity amongst participants.

References

  • 1 Astorino TA, Robergs RA, Ghiasvand F, Marks D, Burns S. Incidence of the oxygen plateau during exercise testing to volitional fatigue.  J Exerc Physiol. 2000;  3 1-12
  • 2 Astorino TA, Willey J, Kinnahan J, Larsson SM, Welch H, Dalleck LC. Elucidating determinants of the plateau in oxygen consumption at VO2max.  Br J Sports Med. 2005;  39 655-660
  • 3 Astorino TA. Alterations in VO2max and the VO2 plateau with manipulation of sampling interval.  Clin Physiol Funct Imag. 2009;  29 60-67
  • 4 Astrand PO, Saltin B. Maximal oxygen uptake and heart rate in various types of muscular work.  J Appl Physiol. 1961;  16 977-981
  • 5 Bangsbo J, Michalsik L, Petersen A. Accumulated O2 deficit during intense exercise and muscle characteristics of elite athletes.  Int J Sports Med. 1993;  14 207-213
  • 6 Bangsbo J. Oxygen deficit: A measure of the anaerobic energy production during intense exercise.  Can J Appl Physiol. 1996;  21 350-363
  • 7 Bassett DR, Howley ET. Maximal oxygen uptake “classical” versus “contemporary” viewpoints.  Med Sci Sports Exerc. 1997;  29 591-603
  • 8 Bassett DR, Howley ET. Limiting factors for maximum oxygen uptake and determinents of endurance performance.  Med Sci Sports Exerc. 2000;  32 70-84
  • 9 Billat VL, Koralsztein JP. Significance of the velocity at VO2max and time to exhaustion at this velocity.  Sports Med. 1994;  22 90-108
  • 10 Billat VL, Beillot J, Jan J, Rochcongar P, Carre F. Gender effect on the relationship of time limit at 100% VO2max with other bioenergetic characteristics.  Med Sci Sports Exerc. 1996;  28 1049-1055
  • 11 Brink-Elfegourn T, Kaijser L, Gustafson T, Ekblom B. Maximal oxygen uptake in not limited by a central nervous system governor.  J Appl Physiol. 2007;  102 781-786
  • 12 Doherty M, Smith PM, Schroder K. Reproducibility of the maximum acculmulated oxygen deficit and run time to exhaustion during short-distance running.  J Sports Sci. 2000;  18 331-338
  • 13 Doherty M, Nobbs L, Noakes T. Low frequency of the “plateau phenomenon” during maximal exercise in elite British athletes.  Eur J Appl Physiol. 2003;  89 619-623
  • 14 Duncan GE, Mahon AD, Howe CA, Del Corral P. Plateau in oxygen uptake at maximal exercise in male children.  Paediatr Exerc Sci. 1996;  8 77-86
  • 15 Fitts RH. The cellular mechanisms of muscle fatigue.  Physiol Rev. 1994;  74 49-94
  • 16 Gastin PB, Lawson DL. Infuence of training status on maximal accumulated oxygen deficit during all out cycle exercise.  Eur J Appl Physiol. 1994;  69 321-330
  • 17 Gastin PB. Energy system interaction and relative contribution during maximal exercise.  Sports Med. 2001;  31 725-741
  • 18 Green S. A definition and systems view of anaerobic capacity.  Eur J Appl Physiol. 1994;  69 168-173
  • 19 Harriss DJ, Atkinson G. International Journal of Sports Medicine – Ethical Standards in Sport and Exercise Science Research.  Int J Sports Med. 2009;  30 701-702
  • 20 Heck H, Schulz H, Bartmus U. Diagnostics of anaerobic power and capacity.  Eur J Sports Sci. 2003;  3 3-23
  • 21 Hill AV, Lupton H. Muscular exercise, lactic acid and the supply and utilisation of oxygen.  Q J Med. 1923;  16 135-171
  • 22 Hill AV, Long CNH, Lupton H. Muscular exercise lactic acid and the supply and utilisation of oxygen: Parts VII-VIII.  Proc R Soc Med. 1924;  97 155-176
  • 23 Howley ET, Bassett DR, Welch HG. Criteria for maximal oxygen uptake: review and commentary.  Med Sci Sports Exerc. 1995;  27 1292-1301
  • 24 Inbar O, Bar-Or O. Anaerobic characteristics in male children and adolecents.  Med Sci Sports Exerc. 1986;  18 264-269
  • 25 Issekutz B, Birkhead NC, Rodhal K. Use of respiratory quotients in assessment of aerobic capacity.  J Appl Physiol. 1962;  17 47-50
  • 26 Jones AM, Carter H. The effect of endurance training on parameters of aerobic fitness.  Sports Med. 2000;  29 373-386
  • 27 Jones AM. The physiology of the world record holder for the women's marathon.  Int J Sports Sci Coach. 2006;  1 101-116
  • 28 Kjaer M. Epinephrine and some other hormonal responses to exercise in man: with special reference to physical training.  Int J Sports Med. 1989;  10 2-15
  • 29 Kon Yoon B, Kravitz L, Robergs R. VO2max protocol duration and the VO2 plateau.  Med Sci Sports Exerc. 2007;  7 1186-1192
  • 30 Londeree BR, Moeschberger ML. Influence of age and other factors on maximal heart rate.  J Card Rehab. 1984;  4 44-49
  • 31 MacArthur DG, North KN. Genes and human athletic performance.  Eur J Appl Physiol. 2005;  5 331-339
  • 32 Medbø JI, Mohn AC, Tabata MI, Bahr R, Vaage O, Sejersted OM. Anaerobic capacity determined by maximal accumulated O2 deficit.  J Appl Physiol. 1988;  64 50-60
  • 33 Noakes TD, Wolffe JB. Memorial Lecture. Challenging beliefs: ex Africa semper aliquid novi.  Med Sci Sports Exerc. 1997;  29 571-590
  • 34 Noakes TD, Peltonen JE, Rusko HK. Evidence that a central governor regulates exercise performance during acute hypoxia and hyperoxia.  J Exp Biol. 2001;  204 3225-3234
  • 35 Olesen HL, Raabo E, Bangsbo J, Secher NH. Maximal oxygen deficit of sprint and middle distance runners.  Eur J Appl Physiol. 1994;  69 140-146
  • 36 Rivera-Brown AM, Alvarez M, Rodriguez-Santana JR, Benetti PJ. Anearobic power and achievement of VO2 plateau in pre-pubertal boys.  Int J Sports Med. 2001;  22 111-115
  • 37 Rivera-Brown AM, Frontera WR. Achievement of plateau and reliability of VO2max in trained adolecents tested with different ergometers.  Pediatr Exerc Sci. 1996;  10 164-175
  • 38 Rowell LB. Human cardiovascular adjustments to exercise and thermal stress.  Physiol Rev. 1974;  54 75-159
  • 39 Rowland TW, Cunningham LN. Oxygen uptake plateau during maximal treadmill exercise in children.  Chest. 1992;  101 485-489
  • 40 Scott CB, Roby FB, Lohman TG, Bunt JC. The maximally accumulated oxygen deficit as an indicator of the anaerobic capacity.  Med Sci Sports Exerc. 1991;  23 618-624
  • 41 Shephard RJ. Is it time to retire the ‘Central Governor’?.  Sports Med. 2009;  39 709-721
  • 42 Taylor HL, Buskirk E, Henschell A. Maximal oxygen intake as an objective measure of cardio-respiratory performance.  J Appl Physiol. 1955;  8 73-80
  • 43 Wagner PD. New ideas on limitations to VO2max.  Exerc Sports Sci Rev. 2000;  10-14
  • 44 Wasserman K. Diagnosing cardiovascular and lung pathophysiology from exercise gas exchange.  Chest. 1997;  112 1091-1101

Correspondence

Dan GordonMSc 

Anglia Ruskin University

Life Sciences

Unit for Sport and Exercise

Sciences

CB1 1PT Cambridge

United Kingdom



Phone: +44/0845/1962 774

Fax: +44/01223/417 712

Email: dan.gordon@anglia.ac.uk