Synlett 2011(15): 2214-2222  
DOI: 10.1055/s-0030-1261202
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Regioselective Multicomponent Synthesis of Fully Substituted Pyrazoles and Bispyrazoles Catalyzed by Zinc Triflate

Shirin Safaei, Iraj Mohammadpoor-Baltork*, Ahmad Reza Khosropour*, Majid Moghadam, Shahram Tangestaninejad, Valiollah Mirkhani
Catalysis Division, Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
Fax: +98(311)6689732; e-Mail: imbaltork@sci.ui.ac.ir; e-Mail: arkhosropour@sci.ui.ac.ir;
Further Information

Publication History

Received 20 April 2011
Publication Date:
30 August 2011 (online)

Abstract

A variety of fully substituted pyrazoles were easily prepared through a three-component condensation of aldehydes, arylhydrazines, and ethyl acetoacetate in the presence of catalytic amounts of zinc triflate [Zn(OTf)2] under solvent-free conditions. Selective synthesis of symmetrical and unsymmetrical bispyrazoles from dialdehydes in high yields can be considered as a notable advantage of this method.

    References and Notes

  • 1a Taylor EC. Patel HH. Tetrahedron  1992,  48:  8089 
  • 1b Sondhi SM. Singhal N. Verma RP. Arora SK. Dastidar SG. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.  2001,  40:  113 
  • 1c Banday AH. Mir BP. Lone IH. Suri KA. Kumar HMS. Steroids  2010,  75:  805 
  • 1d Lv PC. Li HQ. Sun J. Zhou Y. Zhu HL. Bioorg. Med. Chem.  2010,  18:  4606 
  • 2a Oezdemir Z. Kandilci HB. Guemuesel B. Calis U. Bilgin AA. Eur. J. Med. Chem.  2007,  373 
  • 2b Nauduri D. Reddy GB. Chem. Pharm. Bull.  1998,  46:  1254 
  • 2c Bekhit AA. Fahmy HTY. Rostom SAF. Bekhit AEDA. Eur. J. Med. Chem.  2010,  6027 
  • 3a Raman N. Kulandaisamy A. Jeyasubramanian K. Synth. React. Inorg. Met.  2002,  32:  1583 
  • 3b Raman N. Kulandaisamy A. Jeyasubramanian K. Synth. React. Inorg. Met.  2004,  34:  17 
  • 3c Manikannan R. Venkatesan R. Muthusubramanian S. Yogeeswari P. Sriram D. Bioorg. Med. Chem. Lett.  2010,  20:  6920 
  • 4a Idrees GA. Aly OM. El-Din AA. Abuo-Rahma G. Radwan MF. Eur. J. Med. Chem.  2009,  3973 
  • 4b Palaska E. Sahin G. Kelicen P. Durlu NT. Altinok G. Farmaco  2002,  57:  101 
  • 5a Nilsson S. Kuiper G. Gustafsson JA. Trends Endocrinol. Metab.  1998,  9:  387 
  • 5b Stauffer SR. Katzenellenbogen JA. J. Comb. Chem.  2000,  2:  318 
  • 6a Palazzino G. Cecchi L. Melani F. Colotta V. Filacchioni G. Martini C. Lucacchini A. J. Med. Chem.  1987,  30:  1737 
  • 6b Thapa D. Lee JS. Heo SW. Lee YR. Kang KW. Kwak MK. Choi HG. Kim JA. Thapa D. Eur. J. Pharmacology  2011,  650:  64 
  • 7 Donohue SR. Halldin C. Pike VW. Tetrahedron Lett.  2008,  49:  2789 
  • 8 Ismail MAH. Lehmann J. Abou El Ella DA. Albohy A. Abouzid KAM. Med. Chem. Res.  2009,  18:  725 
  • 9a Chen C. Jordan RF. J. Organomet. Chem.  2010,  695:  2543 
  • 9b Mukherjee A. Sarkar A. Tetrahedron Lett.  2005,  46:  15 
  • 10a Katritzky AR. Wang M. Zhang S. Voronkov MV. J. Org. Chem.  2001,  66:  6787 
  • 10b Wang Z. Qin H. Green Chem.  2004,  6:  90 
  • 10c Polshettiwar V. Varma RS. Tetrahedron Lett.  2008,  49:  397 
  • 10d Xiong W. Chen JX. Liu MC. Ding JC. Wu HY. Su WK. J. Braz. Chem. Soc.  2009,  20:  367 
  • 10e Mikhaylichenko SN. Patel SM. Dalili S. Chesnyuk AA. Zaplishny VN. Tetrahedron Lett.  2009,  50:  2505 
  • 10f Polshettiwar V. Varma RS. Tetrahedron  2010,  66:  1091 
  • 11a Elguero J. In Comprehensive Heterocyclic Chemistry II   Vol. 3:  Katritzky AR. Rees CW. Scriven EFV. Pergamon Press; Oxford: 1996.  p.1 
  • 11b Willy B. Müller TJJ. Eur. J. Org. Chem.  2008,  4157 
  • 11c Grotjahn DB. Van S.. Combs D. Lev DA. Schneider C. Rideout M. Meyer C. Hernandez G. Mejorado L. J. Org. Chem.  2002,  67:  9200 
  • 11d Song L.-P. Zhu S.-Z. J. Fluorine Chem.  2001,  111:  201 
  • 11e Gosselin F. Oshea PD. Webster RA. Reamer RA. Synlett  2006,  3267 
  • 12a Safaei-Ghomi J. Bamoniri AH. Soltanian-Telkabadi M. Chem. Heterocycl. Compd.  2006,  42:  892 
  • 12b Katritzky AR. Wang M. Zhang S. Voronkov MV. J. Org. Chem.  2001,  66:  6787 
  • 12c Huang YR. Katzenellenbogen JA. Org. Lett.  2000,  2:  2833 
  • 12d Landge MS. Schmidt A. Outerbridge V. Torok B. Synlett  2007,  1600 
  • 12e Pinto DCGA. Silva AMS. Cavaleiro JAS. Elguero J. Eur. J. Org. Chem.  2003,  747 
  • 13a Suryakiran N. Srikanth RT. Asha LK. Prabhakar P. Venkateswarla Y. J. Mol. Catal. A: Chem.  2006,  258:  371 
  • 13b Dorsch JB. Mcelvain SM. J. Am. Chem. Soc.  1932,  54:  2960 
  • 13c Wang G. Liu X. Zhao G. Tetrahedron: Asymmetry  2005,  16:  1873 
  • 14a Le Fevre G. Hamelin J. Tetrahedron  1980,  36:  887 
  • 14b Kobayashi S. Hirabayashi R. Shimizu H. Ishitani H. Yamashita Y. Tetrahedron Lett.  2003,  44:  3351 
  • 14c Deng X. Mani NS. Org. Lett.  2006,  8:  3505 
  • 14d Deng X. Mani NS. Org. Lett.  2008,  10:  1307 
  • 15a Bardakos V. Sucrow W. Fehlauer A. Chem. Ber.  1975,  108:  2161 
  • 15b Baumes R. Jacquier R. Tarrago G. Bull. Soc. Chim. Fr.  1976,  260 
  • 16 Alex K. Tillack A. Schwarz N. Beller M. Org. Lett.  2008,  10:  2377 
  • 17 Liu H.-L. Jiang H.-F. Zhang M. Yao W.-J. Zhu Q.-H. Tang Z. Tetrahedron Lett.  2008,  49:  3805 
  • 18a Ahmed MSM. Kobayashi K. Mori A. Org. Lett.  2005,  7:  4489 
  • 18b Stonehouse JP. Chekmarev DS. Ivanova NV. Lang S. Pairaudeau G. Smith N. Stocks MJ. Sviridov SI. Utkina LM. Synlett  2008,  100 
  • 19a Aggarwal KV. Vicente DJ. Bonnert VR. J. Org. Chem.  2003,  68:  5381 
  • 19b Huisgen R. Angew. Chem., Int. Ed. Engl.  1963,  2:  565 
  • 19c Cheung KMJ. Reynisson J. Donald EM. Tetrahedron Lett.  2010,  51:  5915 
  • 20a Suen YF. Hope H. Nantz MH. Haddadin MJ. Kurth MJ. J. Org. Chem.  2005,  70:  8468 
  • 20b Neumann JJ. Suri M. Glorius F. Angew. Chem. Int. Ed.  2010,  49:  1 
  • 20c Gosselin F. O’Shea PD. Webster RA. Reamer RA. Tillyer RD. Grabowski EJJ. Synlett  2006,  3267 
  • 21a Shen L. Cao S. Liu N. Wu J. Zhu L. Qian X. Synlett  2008,  1341 
  • 21b Shen L. Zhang J. Cao S. Yu J. Liu N. Wu J. Qian X. Synlett  2008,  3058 
  • 22a Multicomponent Reactions   Zhu J. Bienayme H. Wiley-VCH; Weinheim: 2005. 
  • 22b Orru RVA. de Greef M. Synthesis  2003,  1471 
  • 22c Dömling A. Chem. Rev.  2006,  106:  17 
  • 22d Weber L. Illgen K. Almstetter M. Synlett  1999,  366 
  • 22e Nicolaou KC. Edmonds DJ. Bulger PG. Angew. Chem. Int. Ed.  2006,  45:  7134 
  • 23a Mohammadpoor-Baltork I. Tangestaninejad S. Moghadam M. Mirkhani V. Anvar S. Mirjafari A. Synlett  2010,  3104 
  • 23b Mohammadpoor-Baltork I. Moghadam M. Tangestaninejad S. Mirkhani V. Eskandari Z. Ultrason. Sonochem.  2010,  17:  857 
  • 23c Mohammadpoor-Baltork I. Khosropour AR. Hojati SF. Catal. Commun.  2007,  8:  200 
  • 23d Mohammadpoor-Baltork I. Khosropour AR. Hojati SF. Synlett  2005,  2747 
  • 23e Mohammadpoor-Baltork I. Khosropour AR. Hojati SF. Catal. Commun.  2007,  8:  1865 
  • 23f Khosropour AR. Mohammadpoor-Baltork I. Ghorbankhani H. Catal. Commun.  2006,  7:  713 
  • 23g Khosropour AR. Mohammadpoor-Baltork I. Ghorbankhani H. Tetrahedron Lett.  2006,  47:  3561 
  • 25a Li K. Mohlala MS. Segapelo TV. Shumbula PM. Guzei IA. Darkwa J. Polyhedron  2008,  27:  1017 
  • 25b Boixassa A. Pons J. Ros J. Mathieu R. Lugan N.
    J. Organomet. Chem.  2003,  682:  233 
  • 25c de León A. Pons J. García-Antón J. Ros J. Polyhedron  2010,  29:  2318 
  • 28 Shah JN. Shah KC. J. Org. Chem.  1978,  43:  1266 
24

General Procedure for the Synthesis of Fully Substituted Pyrazoles A mixture of aldehyde 1 (1 mmol) and arylhydrazine 2 (1 mmol) was stirred for 20 min, then ethyl acetoacetate 3 (1.5 mmol) and Zn(OTf)2 (0.02 mmol) were added, and the mixture was stirred at 120 ˚C for the appropriate time according to Table  [²] . The progress of the reaction was monitored by TLC (eluent: n-hexane-EtOAc, 10:1). After completion of the reaction, the mixture was cooled to r.t., and the crude product was purified by chromatography on silica gel (eluent: n-hexane-EtOAc, 10:1) or by recrystallization from EtOH to afford the pure product.

26

General Procedure for the Synthesis of Fully Substituted Bispyrazoles A mixture of dialdehyde 5 (1 mmol) and arylhydrazine 2 (2 mmol) was stirred for 20 min (for unsymmetrical bispyrazoles, a mixture of dialdehyde 5 (1 mmol) and arylhydrazine 2 (1 mmol) was stirred for 20 min, then arylhydrazine 6 (1 mmol) was added and stirred for further 20 min). Ethyl acetoacetate 3 (4 mmol) and Zn(OTf)2 (0.04 mmol) were added, and the mixture was heated at 120 ˚C for the appropriate time (Table  [³] ). The progress of the reaction was monitored by TLC (eluent: n-hexane-EtOAc, 10:1). After completion of the reaction, the mixture was cooled to r.t., and the crude product was purified by chromatography on silica gel (eluent: n-hexane-EtOAc, 10:1) or by recrystallization from EtOH to give the pure product.

27

CCDC 817131 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 (1223)336033;
e-mail: deposit@ccdc.cam.ac.uk].