Synlett 2011(15): 2185-2186  
DOI: 10.1055/s-0030-1261175
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

A Simple and Efficient Protocol to 1,2,4-Substituted Pyrroles via a Sonogashira Coupling-Acid-Catalyzed Cyclization

Da Zhu, Jie Zhao, Yuxiu Wei, Hongwei Zhou*
Department of Chemistry, Zhejiang University, (Campus Xixi), Hangzhou 310007, P. R. of China
Fax: +86(571)88920271; e-Mail: zhouhw@zju.edu.cn;
Further Information

Publication History

Received 3 May 2011
Publication Date:
10 August 2011 (online)

Abstract

A facile and efficient protocol for the synthesis of 1,2,4-substituted pyrrole derivatives was developed. As a result of the ready availability of materials and the simple operation, this type of reaction should have potential utility in organic synthesis.

    References and Notes

  • 1a Estevez V. Villacampa M. Menendez JC. Chem. Soc. Rev.  2010,  39:  4402 
  • 1b Beck EM. Gaunt MJ. C-H Activation  2010,  292:  85 
  • 1c Shinohara KI. Bando T. Sugiyama H. Anti-Cancer Drugs  2010,  21:  228 
  • 1d Cadierno V. Crochet P. Curr. Org. Synth.  2008,  5:  343 
  • 1e Yalcinkaya S. Tuken T. Yazici B. Erbil M. Prog. Org. Coat.  2008,  63:  424 
  • 1f Fan H. Peng J. Hamann MT. Hu JF. Chem. Rev.  2008,  108:  264 
  • 1g Grigg R. Savic V. Chem. Commun.  2000,  873 
  • 2a Perveev FYa. Kuznetsova EM. Zh. Obshch. Khim.  1958,  28:  2360 
  • 2b Miocque M. Duchon-d’Engenieres M. Sauzieres J. Bull. Soc. Chim. Fr.  1975,  7:  1777 
  • 3a Li GT. Huang XG. Zhang LM. Angew. Chem. Int. Ed.  2008,  47:  346 
  • 3b Trost BM. McClory A. Angew. Chem. Int. Ed.  2007,  46:  2074 
  • 3c Ohno H. Ohta Y. Oishi S. Fujii N. Angew. Chem. Int. Ed.  2007,  46:  2295 
  • 3d Cariou K. Ronan B. Mignani S. Fensterbank L. Malacria M. Angew. Chem. Int. Ed.  2007,  46:  1881 
  • 3e Nakamura I. Yamagishi U. Song D. Konta S. Yamamoto Y. Angew. Chem. Int. Ed.  2007,  46:  2284 
  • 4a Barluenga J. Jimenez-Aquino A. Aznar F. Valdes C. J. Am. Chem. Soc.  2009,  131:  4031 
  • 4b Okuma K. Seto JI. Sakaguchi KI. Ozaki S. Nagahora N. Shioji K. Tetrahedron Lett.  2009,  50:  2943 
  • 4c Chen Y. Wang YJ. Sun ZM. Ma DW. Org. Lett.  2008,  10:  625 
  • 4d Fayol A. Fang YQ. Lautens M. Org. Lett.  2006,  8:  4203 
  • 4e Dunetz JR. Danheiser RL. J. Am. Chem. Soc.  2005,  127:  5776 
  • 4f Coleman CM. O’Shea DF. J. Am. Chem. Soc.  2003,  125:  4054 
  • 5 Elangovan A. Wang YH. Ho TI. Org. Lett.  2003,  5:  1841 
  • 7 Peng HM. Zhao J. Lia X. Adv. Synth. Catal.  2009,  351:  1371 
6

General Procedure for the Synthesis of 3a
To a solution of 1a (0.5 mmol) and 2a (0.6 mmol) in 5 mL of THF was charged CuI (2 mg. 0.01 mmol) and PdCl2(PPh3)2 (7 mg, 0.01 mmol), then charged 1 mL of Et3N under an N2 atmosphere at r.t. The reaction was monitored by TLC until it went to completion (4 h). The reaction mixture was quenched with H2O, extracted with Et2O (30 mL), and dried over anhyd Na2SO4. After evaporation of the Et2O, chromatography on silica gel (PE) of the crude product afforded 3a. ¹H NMR (400 MHz, CDCl3): δ = 7.35-7.32 (m, 4 H), 7.27-7.23 (m, 1 H), 6.52-6.52 (d, J = 0.8 Hz, 1 H), 6.01-6.00 (d, J = 2.0 Hz, 1 H), 3.84-3.81 (t, J = 7.4 Hz, 2 H), 2.12 (s, 3 H), 1.64-1.56 (m, 2 H), 1.23-1.17 (q, J = 7.5 Hz, 2 H), 0.83-0.79 (t, J = 7.4 Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 134.6, 134.2, 129.1, 128.6, 126.9, 120.4, 118.7, 110.3, 47.0, 34.0, 20.2, 14.0, 12.2. IR (neat): 1491, 1342 cm. HRMS: m/z calcd for C15H19N: 213.1517; found: 213.1518.